分析 (1)作出辅助线,根据梯形的性质求出PQ的长即可;
(2)设∠PBP1=θ,求出PQ的长,得到总路径长f(θ)的表达式,通过求导得到函数的单调性,从而求出去最小值时θ的值,即P点的位置即可.
解答 解.(1)如图示:
,
连接BP,过P作PP1⊥BC,垂足为P1,过Q作QQ1⊥BC垂足为Q1,
在Rt△PBP1中,$P{P_1}=Q{Q_1}=\frac{{\sqrt{3}}}{2},B{P_1}=C{Q_1}=\frac{1}{2}$,PQ=1;
(2)设∠PBP1=θ,$({0<θ<\frac{{2{π}}}{3}})$,
∴$PQ=2-cosθ-\frac{{\sqrt{3}}}{3}sinθ$,
在Rt△QBQ1中,$DQ=2-\frac{{2\sqrt{3}}}{3}sinθ$,
∴总路径长f(θ)=$\frac{2π}{3}$-θ+4-cosθ-$\sqrt{3}$sinθ,(0<θ<$\frac{2π}{3}$),
f′(θ)=sinθ-$\sqrt{3}$cosθ-1=2sin(θ-$\frac{π}{3}$)-1,
令f'(θ)=0,$θ=\frac{π}{2}$,
当$0<θ<\frac{π}{2}$ 时,f'(θ)<0,
当$\frac{π}{2}<θ<\frac{{2{π}}}{3}$ 时,f'(θ)>0,
所以当$θ=\frac{π}{2}$时,总路径最短.
答:当BP⊥BC时,总路径最短.
点评 本题考查了数形结合思想,考查三角函数问题以及导数的应用,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | 不存在x∈R,使?x2-2x+3≥0 | B. | ?x∈R,x2-2x+3≤0 | ||
| C. | ?x∈R,x2-2x+3≤0 | D. | ?x∈R,x2-2x+3>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,-1,-3) | B. | (-2,1,-3) | C. | (-2,-1,3) | D. | (-2,-1,-3) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com