分析 由条件利用正弦定理可得b2+c2-bc=4.再由余弦定理可得A=$\frac{π}{3}$,利用基本不等式可得bc≤4,当且仅当b=c=4时,取等号,此时,△ABC为等边三角形,从而求得它的面积的值.
解答 解:△ABC中,∵a=2,且(2+b)(sinA-sinB)=(c-b)sinC,
∴利用正弦定理可得(2+b)(a-b)=(c-b)c,
即 b2+c2-bc=4,即b2+c2-4=bc,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∴A=$\frac{π}{3}$.
再由b2+c2-bc=4,利用基本不等式可得 4≥2bc-bc=bc,
∴bc≤4,当且仅当b=c=2时,取等号,
此时,△ABC为等边三角形,
它的面积为 $\frac{1}{2}$bc•sinA=$\frac{1}{2}$×4×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$.
故答案为:$\sqrt{3}$.
点评 本题主要考查正弦定理的应用,基本不等式在解三角形中的应用,考查了转化思想,属于中档题.
科目:高中数学 来源: 题型:解答题
| 组号 | 第一组 | 第二组 | 第三组 | 第四组 | 第五组 |
| 分组 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 等腰三角形 | B. | 直角三角形 | ||
| C. | 等腰三角形或直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | -1 | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com