分析 不等式(x-1)(x-5)(x+3)>0即为$\left\{\begin{array}{l}{(x-1)(x-5)>0}\\{x+3>0}\end{array}\right.$或$\left\{\begin{array}{l}{(x-1)(x-5)<0}\\{x+3<0}\end{array}\right.$,再由一次或二次不等式的解法,即可得到解集.
解答 解:不等式(x-1)(x-5)(x+3)>0即为
$\left\{\begin{array}{l}{(x-1)(x-5)>0}\\{x+3>0}\end{array}\right.$或$\left\{\begin{array}{l}{(x-1)(x-5)<0}\\{x+3<0}\end{array}\right.$,
即有$\left\{\begin{array}{l}{x>5或x<1}\\{x>-3}\end{array}\right.$或$\left\{\begin{array}{l}{1<x<5}\\{x<-3}\end{array}\right.$,
解得x>5或-3<x<1或x∈∅,
则解集为(-3,1)∪(5,+∞).
故答案为:(-3,1)∪(5,+∞).
点评 本题考查高次不等式的解法,注意转化为二次不等式和一次不等式求解,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2x+y+2=0或2x+y-8=0 | B. | x-2y+1=0或x-2y-9=0 | ||
| C. | 2x+y+1=0或2x+y-9=0 | D. | x-2y+2=0或x-2y-8=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $2\sqrt{3}$ | D. | $\sqrt{3}+1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,+∞) | B. | (3,+∞) | C. | (-2,-3) | D. | (-∞,-2)∪(3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com