精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(1)求f(8)的值;
(2)当2≤x≤16时,求f(x)的最大值和最小值.

解:(1)∵函数
∴f(8)==9-4×3+1=-2.
(2)当2≤x≤16时,1≤log2x≤4. 令 t=log2x,则1≤t≤4,f(x)=t2-4t+1=(t-2)2-3,
故当t=2时,f(x)取得最小值为-3,当t=4时,f(x)取得最大值为 1.
分析:(1)根据函数的解析式可得f(8)=,再利用对数的运算性质,求出结果.
(2)当2≤x≤16时,令 t=log2x,则1≤t≤4,f(x)=t2-4t+1=(t-2)2-3,根据二次函数的性质求出f(x)的最大值和最小值.
点评:本题主要考查对数的运算性质,二次函数的最值的求法,体现了化归与转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年浙江省杭州市富阳市场口中学高三(上)8月月考数学试卷(理科)(解析版) 题型:解答题

已知函数
(1)求f(x)的最大值及取得最大值时的x集合;
(2)设△ABC的角A,B,C的对边分别为a,b,c,且a=1,f(A)=0.求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市海淀区高一(上)期中数学试卷(解析版) 题型:解答题

已知函数
(1)求f(f(3))的值;
(2)判断函数在(1,+∞)上单调性,并用定义加以证明.
(3)当x取什么值时,的图象在x轴上方?

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省常州高级中学高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知函数
(1)求f(x)的最小正周期和值域;
(2)若x=x为f(x)的一个零点,求sin2x的值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省莆田市仙游一中高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知函数
(1)求f(x)的最小正周期;
(2)求f(x)的单调递减区间;
(3)函数f(x)的图象经过怎样的平移才能使其对应的函数成为奇函数?

查看答案和解析>>

科目:高中数学 来源:2011年江苏省连云港市赣榆高级中学高三3月调研数学试卷(解析版) 题型:解答题

已知函数
(1)求f(x)的最小正周期及对称中心;
(2)若,求f(x)的最大值和最小值.

查看答案和解析>>

同步练习册答案