【题目】如图,有一个正三棱锥的零件,P是侧面ACD上的一点.过点P作一个与棱AB垂直的截面,怎样画法?并说明理由.
【答案】解:取 中点 ,可利用直线与平面垂直的判定定理,可证得 平面 ,过点 与 平行的直线与平面 ,进而与 垂直。
画法:过点P在面ACD内作EF//CD,交AC于E点,交AD于F点.
过E作EG⊥AB,连接FG,平面EFG为所求.
理由:取CD中点M,连接AM,BM.
∵A-BCD为正三棱锥,
∴AC=AD,BC=BD,
∴BM⊥CD,AM⊥CD
AM∩BM=M,
AM 平面ABM ,BM 平面ABM,
∴CD⊥平面ABM
∵AB 平面ABM,
∴CD⊥AB.
∵EF∥CD,
∴EF⊥AB .
过E作EG⊥AB,连接FG,
∵EF∩EG=E .
EF 面EFG,EG 面EFG,
AB⊥面EFG
【解析】先根据等腰三角形的性质可得BM⊥CD,AM⊥CD,再根据空间直线与平面的垂直的性质可知CD⊥AB同理可得EF⊥AB,所以根据空间直线与平面垂直的判定定理可得出EG⊥AB,进而得到AB⊥面EFG。
科目:高中数学 来源: 题型:
【题目】设椭圆C: + =1(a>b>0)过点(2,0),离心率为 .
(1)求C的方程;
(2)过点(1,0)且斜率为1的直线l与椭圆C相交于A,B两点,求AB的中点M的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}是各项均为正数的等比数列a1+a2=2( ),a3+a4+a5=64 + + )
(1)求{an}的通项公式;
(2)设bn=(an+ )2 , 求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两矩形ABCD与ADEF所在的平面互相垂直,AB=1,若将△DEF沿直线FD翻折,使得点E落在边BC上(即点P),则当AD取最小值时,边AF的长是;此时四面体F﹣ADP的外接球的半径是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}是公比不为1的等比数列,a1=1,且a1 , a3 , a2成等差数列.
(1)求数列{an}的通项;
(2)若数列{an}的前n项和为Sn , 试求Sn的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递减,若实数a满足f(3|2a+1|)>f(﹣ ),则a的取值范围是( )
A.(﹣∞,﹣ )∪(﹣ ,+∞)
B.(﹣∞,﹣ )
C.(﹣ ,+∞)
D.(﹣ ,﹣ )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,D1D⊥底面ABCD,底面ABCD是正方形,
(1)若E为DD1的中点,证明:BD1∥面EAC
(2)求证:AC⊥平面BB1D1D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com