精英家教网 > 高中数学 > 题目详情
17.若$\overrightarrow{AO}+\overrightarrow{OB}+\overrightarrow{CA}+\overrightarrow{OC}+\overrightarrow{BO}$=(  )
A.$\overrightarrow{AB}$B.$\overrightarrow 0$C.$\overrightarrow{AC}$D.$\overrightarrow{BC}$

分析 根据向量加法的几何意义进行运算即可.

解答 解:$\overrightarrow{AO}+\overrightarrow{OB}+\overrightarrow{CA}+\overrightarrow{OC}+\overrightarrow{BO}$=$\overrightarrow{AB}+\overrightarrow{BO}+\overrightarrow{OC}+\overrightarrow{CA}=\overrightarrow{AO}+\overrightarrow{OC}$$+\overrightarrow{CA}$=$\overrightarrow{0}$.
故选B.

点评 向量加法的几何意义,及向量加法的运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.计算下列定积分,$\int_0^π{(cosx+2x)}$dx=π2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列命题中的说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B.“x=-1”是“x2-5x-6=0”的必要不充分条件
C.命题“?x0∈R,使得x02+x0+1<0”的否定是:“?x∈R,均有x2+x+1>0”
D.若命题p:?x0∈R,tanx0=1;命题q:?x∈R,x2-x+1>0,则命题“p且q”是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在党的群众教育路线总结阶段,一督导组从某单位随机抽调25名员工,对本单位的各项开展工作进行打分评价,现获得如下的数据:70,82,81,76,80,77,77,65,85,69,83,71,76,89,74,73,83,82,72,74,86,79,76,根据上述数据得到样本的频率分布表如下:
分组频数频率
[65,70]30.12
(70,75]50.20
(75,80]nx
(80,85]7y
(85,90]m0.08
(1)确定样本频率分布表中n,m,x,y的值;
(2)根据上述频率分布表,画出样本频率分布直方图;
(3)根据样本频率分布表,求在该单位中任取3名员工的打分,恰有2名员工的打分在(75,85)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)已知 f(x)=|x+2|+|x-4|的最小值是n,则二项式 (x-$\frac{1}{x}$)n展开式中x2项的系数为多少.
(2)某校高三年级从2名教师和4名学生中选出3人,分别组建成不同的两支球队进行双循环师生友谊赛.要求每支球队中有且只有一名教师,则不同的比赛方案共有几种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}1-2|x-\frac{1}{2}|,0≤x≤1\\{log_{2014}}x,\;\;\;\;\;x>1\end{array}$,若直线y=m与函数y=f(x)三个不同交点的横坐标依次为x1,x2,x3且x1<x2<x3,则x3的取值范围是(  )
A.(2,2015)B.(1,2015)C.(2,2014)D.(1,2014)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=x2-ex-ax在R上存在单调递增区间,则实数a的最大值为2ln2-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示.在△ABC中,∠BAC=120°,AB=2,AC=1,D为线段BC上-点.
(1)若BD=2DC,求$\overrightarrow{AD}$•$\overrightarrow{BC}$;
(2)若点O为三角形的重心,求$\overrightarrow{AO}$•$\overrightarrow{BC}$;
(3)若D为线段上动点,求$\overrightarrow{AD}$•$\overrightarrow{BC}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx,g(x)=$\frac{1}{3}$x3+ax-$\frac{1}{3}$,a∈R.
(1)若曲线y=f(x)在点(1,f(1))处的切线与曲线y=g(x)相切,求实数a的值;
(2)设a≥0,若对?x1、x2∈(0,$\frac{1}{2}$),且x1≠x2,都有|f(x1)-f(x2)|>|g(x1)-g(x2)|,求实数a的取值范围;
(3)若存在不相等的实数x1,x2,x3,使得$\left\{\begin{array}{l}{g({x}_{i})=-{x}_{i}^{2}+b}\\{{g}^{'}({x}_{i})=0}\end{array}\right.$(i=1,2,3)成立,求实数b的取值范围.

查看答案和解析>>

同步练习册答案