【题目】已知函数.
(Ⅰ)求函数的极值;
(Ⅱ)当时,恒成立,求的取值范围.
【答案】(Ⅰ)见解析;(Ⅱ).
【解析】
(Ⅰ)对函数求导,根据讨论的取值及的单调性,从而得到函数的极值;
(Ⅱ)根据当时,恒成立,转化为恒成立,再构造函数,利用导数及函数的单调性讨论的范围求最值得到答案.
(Ⅰ)函数的定义域为.
当时,恒成立,所以在上单调递增,则函数无极值;
当时,令,则,
故当时,,当时,,
从而在上单调递减,在上单调递增,
所以当时,函数取得极小值,无极大值;
综上可知,当时,函数无极值;
当时,函数有极小值,无极大值.
(Ⅱ)当,恒成立,即恒成立,
即恒成立,令,
则恒成立,即,
则必有成立,即.
,
令,则,可知,
由知,当时,,
可知时,,时,,
所以在上单调递减,在上单调递增,
故,
所以只需,即,故;
当时,,可知)时,,
时,,
所以在上单调递增,在上单调递减,
故,只需,
即成立,即.
综上可知,的取值范围为.
科目:高中数学 来源: 题型:
【题目】若存在实数k,b,使得函数和对其定义域上的任意实数x同时满足:且,则称直线:为函数和的“隔离直线”.已知,(其中e为自然对数的底数).试问:
(1)函数和的图象是否存在公共点,若存在,求出交点坐标,若不存在,说明理由;
(2)函数和是否存在“隔离直线”?若存在,求出此“隔离直线”的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数(x∈R,实数a∈[0,+∞),e=2.71828…是自然对数的底数,).
(Ⅰ)若f(x)≥0在x∈R上恒成立,求实数a的取值范围;
(Ⅱ)若ex≥lnx+m对任意x>0恒成立,求证:实数m的最大值大于2.3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设直线与直线分别与椭圆交于点,且四边形的面积为.
(1)求椭圆的方程;
(2)设过点的动直线与椭圆相交于,两点,是否存在经过原点,且以为直径的圆?若有,请求出圆的方程,若没有,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知的两个顶点坐标是,,的周长为,是坐标原点,点满足.
(1)求点的轨迹的方程;
(2)若互相平行的两条直线,分别过定点和,且直线与曲线交于两点,直线与曲线交于两点,若四边形的面积为,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一个不透明的盒子中装有4个大小、形状、手感完全相同的小球,分别标有数字1,2,3,4.现每次有放回地从中任意取出一个小球,直到标有偶数的球都取到过就停止.小明用随机模拟的方法估计恰好在第3次停止摸球的概率,利用计算机软件产生随机数,每1组中有3个数字,分别表示每次摸球的结果,经随机模拟产生了以下18组随机数:
131 432 123 233 234 122 332 141 312 241 122 214 431 241 141 433 223 442
由此可以估计恰好在第3次停止摸球的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,平面四边形中,为直角,为等边三角形,现把沿着折起,使得平面与平面垂直,且点M为的中点.
(1)求证:平面平面;
(2)若,求直线与平面所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国南北朝时期的数学家祖暅提出了计算几何体体积的祖暅原理:“幂势既同,则积不容异“.意思是两个同高的几何体,如果在等高处的截面积都相等,那么这两个几何体的体积相等.现有某几何体和一个圆锥满足祖暅原理的条件,若该圆锥的侧面展开图是半径为3的圆的三分之一,则该几何体的体积为( )
A.πB.πC.4D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是2020项的实数数列,中的每一项都不为零,中任意连续11项的乘积是定值.
①存在满足条件的数列,使得其中恰有365个1;
②不存在满足条件的数列,使得其中恰有550个1.
命题的真假情况为( )
A.①和②都是真命题B.①是真命题,②是假命题
C.②是真命题,①是假命题D.①和②都是假命题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com