精英家教网 > 高中数学 > 题目详情
y=1+sin x,x∈[0,2π]的图象与直线y=2交点的个数是(  )
A、0B、1C、2D、3
考点:正弦函数的图象
专题:三角函数的图像与性质
分析:作出函数y=1+sinx和y=2的图象,由数形结合即可得到结论.
解答: 解:作出y=1+sin x在[0,2π]上的图象,可知只有一个交点.
故答案为:B
点评:本题主要考查三角函数的图象和性质,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c,满足f(-1)=0,对于任意x都满足1-x≤f(x)≤x2-x恒成立,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果圆柱的体积是16π,底面直径与母线长相等,则底面圆的半径为(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

平面四边形ABCD的四个顶点A,B,C,D均在平行四边形A1,B1,C1,D1所确定的平面a外,且AA1,BB1,CC1,DD1互相平行,求证:ABCD是平行四边形.

查看答案和解析>>

科目:高中数学 来源: 题型:

若x>y>0,则
xyyx
yyxx
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是奇函数,存在常数a>0,使f(a)=1,又f(x1-x2)=
f(x1)f(x2)+1
f(x2)-f(x1)

(1)求f(2a);
(2)若f(x)有意义,证明:存在常数t>0,使f(x+t)=f(x);
(3)若x∈(0,2a),则f(x)>0成立,求证:当x∈(0,2a)时f(x)是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x∈R|
3
x+1
≥1},集合B={x∈R|y=
-x2+x-m+m2
}
(1)若A∪B=A,求m的取值范围.
(2)设全集为R,若A⊆∁RB,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|y2=2x},P={﹙x,y﹚|y2=2x},请说明两集合的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C,D是平面上四点,O是空间任一点,{an}为等差数列若
OA
=a1
OB
+a8
OC
+a15
OD
,则a8=
 

查看答案和解析>>

同步练习册答案