【题目】已知直线PA,PB分别与半径为1的圆O相切于点A,B,PO=2, .若点M在圆O的内部(不包括边界),则实数λ的取值范围是( )
A.(﹣1,1)
B.
C.
D.(0,1)
【答案】B
【解析】解法一:如图,在线段PA的延长线上取点Q,使得PA=AQ,连接OQ,交圆于C, 由圆的半径为1,PO=2可得∠BOP=∠AOP=∠AOQ=60°,PB= ,故B,O,Q三点共线,且BQ=3
因为2 = ,∴ =λ +(1﹣λ) . .
由点M在圆O的内部(不包括边界),∴0<
故选:B
解法二:以O为原点, 的方向为x轴正方向建立平面直角坐标系,则P(2,0)
A( ),B( ,﹣ ),设M(x0 , y0),
由 .得 ,y0= ,
∵M(x0 , y0)在圆O的内部(不包括边界),∴ ,
整理得﹣1<3λ﹣1<1,解得0<
故选:B
【考点精析】本题主要考查了平面向量的基本定理及其意义的相关知识点,需要掌握如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】(本小题10分)选修4—4:坐标系与参数方程
已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ。
(Ⅰ)把C1的参数方程化为极坐标方程;
(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,侧面AA1B1B⊥底面ABC,△ABC和△ABB1都是边长为2的正三角形.
(Ⅰ)过B1作出三棱柱的截面,使截面垂直于AB,并证明;
(Ⅱ)求AC1与平面BCC1B1所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中有除颜色外完全相同的红、黄、白三种颜色的球各一个,从中每次任取1个.有放回地抽取3次,求:
(1)3个全是红球的概率. (2)3个颜色全相同的概率.
(3)3个颜色不全相同的概率. (4)3个颜色全不相同的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】心理学家研究某位学生的学习情况发现:若这位学生刚学完的知识存留量记为1,则x天后的存留量;若在t(t>4)天时进行第一次复习,则此时知识存留量比未复习情况下增加一倍(复习时间忽略不计),其后存留量y2随时间变化的曲线恰为直线的一部分,其斜率为(a<0),存留量随时间变化的曲线如图所示.当进行第一次复习后的存留量与不复习的存留量相差最大时,则称此时刻为“二次复习最佳时机点”.
(1)若a=-1,t=5求“二次复习最佳时机点”;
(2)若出现了“二次复习最佳时机点”,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线C:x2=2py(p>0)的焦点为F,过F的直线l交C于A,B两点,交x轴于点D,B到x轴的距离比|BF|小1.
(Ⅰ)求C的方程;
(Ⅱ)若S△BOF=S△AOD , 求l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com