在乒乓球比赛中,甲与乙以“五局三胜”制进行比赛,根据以往比赛情况,甲在每一局胜乙的概率均为
.已知比赛中,乙先赢了第一局,求:
(Ⅰ)甲在这种情况下取胜的概率;
(Ⅱ)设比赛局数为X,求X的分布列及数学期望(均用分数作答)。
(Ⅰ)
(Ⅱ)见解析
【解析】
试题分析:(Ⅰ) 由题知,在乙先赢了第一局的情况下,甲取胜是两个互斥事件的和,其概率用互斥事件的和概率公式计算,其中一个事件,比赛四局,第一局乙赢的条件下,后三局甲赢,因甲每局胜的概率相同,其概率按独立重复试验计算,另一事件为,比赛五局,在第一局乙胜的条件下,中间三局甲胜二局,其概率按独立重复试验计算,与最后一局甲胜是相互独立事件,用相互独立事件的积概率公式计算;(Ⅱ)由题意知找出X的所有可能取值,分析X取每个值时的情况,将其分解成若干个互斥简单事件的和,利用和概率公式计算,分析每个简单事件分成若干个相互独立事件的积,利用积概率公式计算其概率,列出分布列,求出期望.
试题解析:(Ⅰ)甲取胜的概率为
=
(4分)
(Ⅱ) 由题意知X=3,4,5,
![]()
![]()
![]()
的分布列为:
| 3 | 4 | 5 |
|
|
|
|
.12分
考点:独立重复试验,互斥事件的和概率公式,相互独立事件的积概率公式,离散型随机变量分布列及其期望,应用意识
科目:高中数学 来源:2013-2014学年河南省长葛市毕业班第三次质量预测(三模)文科数学试卷(解析版) 题型:填空题
已知圆P:x2+y2=4y及抛物线S:x2=8y,过圆心P作直线l,此直线与上述两曲线的四个交点,自左向右顺次记为A,B,C,D,如果线段AB,BC,CD的长按此顺序构成一个等差数列,则直线l的斜率为__
查看答案和解析>>
科目:高中数学 来源:2013-2014学年河南省郑州市高三第二次模拟考试文科数学试卷(解析版) 题型:选择题
设
是两个不同的平面,
是一条直线,以下命题:
①若
,则
∥
;②若
∥
,
∥
,则
∥
;
③若
,
∥
,则![]()
![]()
;④若
∥
,![]()
,则![]()
![]()
.
其中正确命题的个数是
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
科目:高中数学 来源:2013-2014学年河南省毕业班高考适应性模拟练习理科数学试卷(解析版) 题型:选择题
设有算法如图所示:如果输入A=144,B=39,则输出的结果是( )
![]()
A.144 B.3 C.0 D.12
查看答案和解析>>
科目:高中数学 来源:2013-2014学年河南省原名校高三高考仿真模拟统一考试理科数学试卷(解析版) 题型:解答题
在直角坐标系中,以原点为极点,x轴的正半辐为极轴建立极坐标系,已知曲线
,过点P(-2,-4)的直线
的参数方程为:
(t为参数),直线
与曲线C相交于M,N两点.
(Ⅰ)写出曲线C的直角坐标方程和直线
的普通方程;
(Ⅱ)若
成等比数列,求a的值
查看答案和解析>>
科目:高中数学 来源:2013-2014学年河南省原名校高三高考仿真模拟统一考试理科数学试卷(解析版) 题型:选择题
已知双曲线
的一条渐近线方程是
,它的一个焦点在抛物线
的准线上,则双曲线线的方程为
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:2013-2014学年河南省原名校高三高考仿真模拟统一考试文科数学试卷(解析版) 题型:填空题
设a为实数,函数
的导函数为
,且
是偶函数,则曲线y=f(x)在原点处的切线方程是________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年河北省邯郸市高三第二次模拟考试理科数学试卷(解析版) 题型:解答题
已知
、
为椭圆
的左右焦点,点
为其上一点,且有![]()
.
(1)求椭圆
的标准方程;
(2)过
的直线
与椭圆
交于
、
两点,过
与
平行的直线
与椭圆
交于
、
两点,求四边形
的面积
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com