精英家教网 > 高中数学 > 题目详情

【题目】已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时, >0,若a=f(1),b=﹣2f(﹣2),c=(ln )f(ln ),则a,b,c的大小关系正确的是(
A.a<c<b
B.b<c<a
C.a<b<c
D.c<a<b

【答案】D
【解析】解:设g(x)=xf(x),

∵x≠0时,

∴x>0时,g′(x)>0;

∴g(x)在(0,+∞)上单调递增;

∵f(x)为奇函数;

∴b=﹣2f(﹣2)=2f(2),

又a=f(1)=1f(1);

∵ln2<1<2,g(x)在(0,+∞)上单调递增;

∴g(ln2)<g(1)<g(2);

即(ln2)f(ln2)<1f(1)<2f(2);

∴c<a<b.

故选:D.

根据a,b,c的表示形式构造函数g(x)=xf(x),根据条件可说明x>0时,g′(x)>0,这便得到g(x)在(0,+∞)上单调递增.而由f(x)为奇函数便可得到b=2f(2),c=(ln2)f(ln2),而容易判断ln2<1<2,从而得到g(ln2)<g(1)<g(2),这样便可得出a,b,c的大小关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】长方体ABCDA1B1C1D1ABBC2D1D3MB1C1的中点NAB的中点建立如图所示的空间直角坐标系.

(1)写出点DNM的坐标

(2)求线段MDMN的长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥PABCD的底面ABCD是正方形,EF分别为ACPB上的点,它的直观图,正视图,侧视图如图所示.

(1)EF与平面ABCD所成角的大小;

(2)求二面角BPAC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在Rt△ABC中,∠C=90°BC=6AC=3DE分别是ACAB上的点,且DE∥BCDE=4,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2

1)求证:平面

2)过点E作截面 平面,分别交CBFH,求截面的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求的值域;

(2)设函数, ,若对于任意, 总存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O1的方程为x2(y1)24O2的圆心为O2(2,1)

(1)若圆O1与圆O2外切求圆O2的方程;

(2)若圆O1与圆O2交于AB两点|AB|2求圆O2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,A(0,1)AB边上的高CD所在直线的方程为x2y40AC边上的中线BE所在直线的方程为2xy30.

(1)求直线AB的方程;

(2)求直线BC的方程;

(3)BDE的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为平行四边形的四棱锥P﹣ABCD中,PA⊥平面ABCD,且BC=2AB═4,∠ABC=60°,点E是PD的中点.
(1)求证:AC⊥PB;
(2)当二面角E﹣AC﹣D的大小为45°时,求AP的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣k)ex . (Ⅰ)求f(x)的单调区间;
(Ⅱ)求f(x)在区间[0,1]上的最小值.

查看答案和解析>>

同步练习册答案