【题目】如图,在底面为平行四边形的四棱锥P﹣ABCD中,PA⊥平面ABCD,且BC=2AB═4,∠ABC=60°,点E是PD的中点.
(1)求证:AC⊥PB;
(2)当二面角E﹣AC﹣D的大小为45°时,求AP的长.
【答案】
(1)证明:∵在底面为平行四边形的四棱锥P﹣ABCD中,PA⊥平面ABCD,
∴AC⊥PA,
∵BC=2AB═4,∠ABC=60°,
∴AC= =2 ,
∴AC2+AB2=BC2,∴AB⊥AC,
∵PA∩AB=A,∴AC⊥平面PAB,
∵PB平面PAB,∴AC⊥PB.
(2)解:以A为原点,AC为x轴,AB为y轴,AP为z轴,建立空间直角坐标系,
设AP=t,则P(0,0,t),D(2 ,2,0),E( ),C(2 ,0,0),A(0,0,0),
=(2 ,0,0), =( ),
设平面ACE的法向量 =(x,y,z),
则 ,取z=2,得 =(0,﹣t,2),
平面ACD的法向量 =(0,0,1),
∵二面角E﹣AC﹣D的大小为45°,
∴cos45°= = ,
解得t=2.∴AP=2.
【解析】(1)推导出AC⊥PA,AB⊥AC,从而AC⊥平面PAB,由此能证明AC⊥PB.(2)以A为原点,AC为x轴,AB为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出AP.
【考点精析】认真审题,首先需要了解空间中直线与直线之间的位置关系(相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点).
科目:高中数学 来源: 题型:
【题目】已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时, >0,若a=f(1),b=﹣2f(﹣2),c=(ln )f(ln ),则a,b,c的大小关系正确的是( )
A.a<c<b
B.b<c<a
C.a<b<c
D.c<a<b
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88,若样本B数据恰好是样本A数据都加上2后所得数据,则A,B两样本的下列数字特征对应相同的是( )
A. 众数 B. 平均数
C. 中位数 D. 标准差
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线 ﹣ =1(a>0,b>0)的左、右焦点分别为F1、F2 , 点P(x0 , )为双曲线上一点,若△PF1F2的内切圆半径为1,且圆心G到原点O的距离为 ,则双曲线的离心率是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)满足f(-x-1)=f(x-1),其图象过点(0,1),且与x轴有唯一交点。
(1)求f(x)的解析式;
(2)设函数g(x)=f(x)-(2+a)x,求g(x)在[1,2]上的最小值h(a)。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出以下四个说法: ①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;
②在刻画回归模型的拟合效果时,相关指数R2的值越大,说明拟合的效果越好;
③设随机变量ξ服从正态分布N(4,22),则p(ξ>4)=
④对分类变量X与Y,若它们的随机变量K2的观测值k越小,则判断“X与Y有关系”的把握程度越大.
其中正确的说法是( )
A.①④
B.②③
C.①③
D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数 .
(1)若曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,求f(x)的单调区间(其中e为自然对数的底数);
(2)若对任意x1>x2>0,f(x1)﹣f(x2)<x1﹣x2恒成立,求k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com