精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线 =1(a>0,b>0)的左、右焦点分别为F1、F2 , 点P(x0 )为双曲线上一点,若△PF1F2的内切圆半径为1,且圆心G到原点O的距离为 ,则双曲线的离心率是

【答案】
【解析】解:设P为第一象限的点,

圆与F1F2,PF1,PF2的切点分别为A',B,D.

∵|PF1|﹣|PF2|=2a,|PD|=|PB|,|DF1|=|A'F1|,|BF2|=|A'F2|,

即为|PD|+|DF1|﹣|PB|﹣|BF2|=|DF1|﹣|BF2|=|A'F1|﹣|A'F2|=2a,

且|A'F1|+|A'F2|=2c,可得|A'F2|=c﹣a,

则A与A'重合,则|OA'|=|OA|=a,

= ,即a=2.

又△PF1F2的面积S= × ×|2c|= (|F1F2|+|PF1|+|PF2|)×1,

∴|PF1|+|PF2|=3c,

∵|PF1|﹣|PF2|=2a,

∴|PF1|= ,|PF2|=

∵|PF1|= ,|PF2|= ,联立化简得x0=3.

P代入双曲线方程,联立解得b= ,c= =3,

即有双曲线的离心率为e= =

所以答案是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=

∠ACD=90°∠EAC=60°AB=AC=AE.

(1)在直线BC上是否存在一点P,使得DP∥平面EAB?请证明你的结论.

(2)求平面EBD与平面ABC所成的锐二面角θ的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求的值域;

(2)设函数, ,若对于任意, 总存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,A(0,1)AB边上的高CD所在直线的方程为x2y40AC边上的中线BE所在直线的方程为2xy30.

(1)求直线AB的方程;

(2)求直线BC的方程;

(3)BDE的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了保护学生的视力教室内的日光灯在使用一段时间后必须更换.已知某校使用的100只日光灯在必须换掉前的使用天数如下表:

天数/

151180

181210

211240

241270

271300

301330

331360

361390

灯管数/

1

11

18

20

25

16

7

2

(1)试估计这种日光灯的平均使用寿命;

(2)若定期更换可选择多长时间统一更换合适?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为平行四边形的四棱锥P﹣ABCD中,PA⊥平面ABCD,且BC=2AB═4,∠ABC=60°,点E是PD的中点.
(1)求证:AC⊥PB;
(2)当二面角E﹣AC﹣D的大小为45°时,求AP的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>0)的焦点在x轴上,且椭圆C的焦距为2. (Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点R(4,0)的直线l与椭圆C交于两点P,Q,过P作PN⊥x轴且与椭圆C交于另一点N,F为椭圆C的右焦点,求证:三点N,F,Q在同一条直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输出的S的值为64,则判断框内可填入的条件是(
A.k≤3?
B.k<3?
C.k≤4?
D.k>4?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB=BC,D为线段AC的中点.

(1)求证:PA⊥BD.

(2)求证:BD⊥平面PAC.

查看答案和解析>>

同步练习册答案