精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

正四棱柱ABCD—A1B1C1D1中,已知AB=2,E,F分别是D1B,AD的中点,

(1)建立适当的坐标系,求出E点的坐标;

(2)证明:EF是异面直线D1B与AD的公垂线;

(3)求二面角D1—BF—C的余弦值.

 

【答案】

(1)E点坐标为(1,1,1). (2)见解析;(3)二面角D1—BF—C的余弦值为.

【解析】(1) 以D为原点,DA,DC,DD1所在直线为x轴,y轴,z轴,建立空间直角坐标系,则易确定A、B、C的坐标分别为A(2,0,0)、B(2,2,0)、C(0,2,0).设D­1(0,0,2m)(m>0),则E(1, 1, m).

   

(2)利用向量垂直的坐标运算证明即可.

(3)利用向量法求二面角,首先求出两个面的法向量,再根据法向量的夹角与二面角相等或互补来求二面角的大小.

(1)以D为原点,DA,DC,DD1所在直线为x轴,y轴,z轴,建立空间直角坐标系,则A、B、C的坐标分别为A(2,0,0)、B(2,2,0)、C(0,2,0).

设D­1(0,0,2m)(m>0),则E(1, 1, m).

故E点坐标为(1,1,1).                                  …………………4分

(2)由(I)可知,正四棱柱ABCD—A1B1C1D1是棱长为2的正方体.

又∵FD=1, ∴F(1,0,0),

故EF是AD与D1B的公垂线.                                  …………………8分

(3)设n⊥平面FD1B,n=(x,y,z)

       

        取n0=(2,-1,1),                               …………………10分

        则n0所成角θ等于二面角D1—FB—C的平面角,

       

∴二面角D1—BF—C的余弦值为                          …………………12分

解法二:(Ⅲ)延长CD交BF延长线于P,作DN⊥BP于N,连ND1

        ∵DD1⊥平面ABCD,       ∴ND1⊥BP,

∴∠DND1就   是二面角D1—FD—C的平面角.       ……10分

在Rt△DFP中,DP=2,FD=1,FP=,  

∴二面角D1—BF—C的余弦值为.    ……………………12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案