精英家教网 > 高中数学 > 题目详情

(本小题满分10分)已知指数函数,当时,有,解关于x的不等式

不等式的解集为

解析试题分析:∵ 时,有,  ∴ 。------------------(2分)
于是由
,-------------------------(6分)
解得
∴ 不等式的解集为。-------------(10分)
考点:本题主要考查指数函数、对数函数的性质,简单不等式组的解法。
点评:典型题,涉及指数函数、对数函数的性质问题,要特别注意,函数的底数的取值范围,0<a<1时,函数是减函数,a>1时,函数是增函数。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某商店将进货价10元的商品按每个18元出售时,每天可卖出60个.商店经理到市场做了一番调研后发现,如将这种商品的售价(在每个18元的基础上)每提高1元,则日销售量就减少5个;如将这种商品的售价(在每个18元的基础上)每降低1元,则日销售量就增加10个.为获得每日最大的利润,此商品售价应定为每个多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知某公司生产某品牌服装的年固定成木为10万元,每生产一千件需另投入2.7万元,设该公司年内共生产该品牌服装x千件并全部销售完,每销售一千件的收入为R(x)万元,且

(注:年利润=年销售收入一年总成本)
(1)写出年利润W(万元)关于年产品x(千件)的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

化简求值:(12分)
(1) (2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在的函数,对任意的,都有,且当时,.
(1)证明:当时,
(2)判断函数的单调性并加以证明;
(3)如果对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)一艘轮船在航行中每小时的燃料费和它的速度的立方成正比,已知在速度为每小时10公里时的燃料费是每小时8元,而其他与速度无关的费用是每小时128元.
(1)求轮船航行一小时的总费用与它的航行速度(公里/小时)的函数关系式;
(2)问此轮船以多大的速度航行时,能使每公里的总费用最少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共12分)
已知函数的图象过点,且在内单调递减,在上单调递增。
(1)求的解析式;
(2)若对于任意的,不等式恒成立,试问这样的是否存在.若存在,请求出的范围,若不存在,说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数.
(Ⅰ)若,求取值范围;
(Ⅱ)求的最值,并给出最值时对应的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分))
京广高铁于2012年12月26日全线开通运营,次列车在平直的铁轨上匀速行驶,由于遇到紧急情况,紧急刹车时列车行驶的路程 (单位:)和时间 (单位:)的关系为:.
(1)求从开始紧急刹车至列车完全停止所经过的时间;
(2)求列车正常行驶的速度;
(3)求紧急刹车后列车加速度绝对值的最大值.

查看答案和解析>>

同步练习册答案