精英家教网 > 高中数学 > 题目详情

(本题满分12分)

已知直线l:mx–2y+2m=0(mR)和椭圆C:(a>b>0), 椭圆C的离心率为,连接椭圆的四个顶点形成四边形的面积为2.

(I)求椭圆C的方程;

(II)设直线l经过的定点为Q,过点Q作斜率为k的直线l/与椭圆C有两个不同的交点,求实数k的取值范围;

(Ⅲ)设直线l与y轴的交点为P,M为椭圆C上的动点,线段PM长度的最大值为f(m),求f(m)的表达式.

(本题满分12分)

(I)由离心率,得

又因为,所以

即椭圆标准方程为.                          4分

(II)由l:mx–2y+2m=0经过定点Q(–2, 0),  则直线l/:y=k(x+2), 

  由   有

    所以,  可化为

    解得.                                  8分

(Ⅲ) 由l:mx–2y+2m=0,设x=0, 则y=m, 所以P(0, m).

设M(x, y)满足,

则|PM|2 =x2 +(y –m)2 =2–2y2 +(y – m )2 = –y2 –2my +m2+2

      = –(y +m)2 +2m2 +2, 因为 –1y1,  所以

 当|m|>1时,|MP|的最大值f(m)=1+|m|;

 当|m|1时,|MP|的最大值f(m)=

所以f(m)=.                         12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12分)已知数列是首项为,公比的等比数列,,

,数列.

(1)求数列的通项公式;(2)求数列的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题

(本题满分12分,第1小题6分,第2小题6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB

(2) 若,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题

(本题满分12分)

设函数为常数),且方程有两个实根为.

(1)求的解析式;

(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题

(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)

如图所示,直二面角中,四边形是边长为的正方形,上的点,且⊥平面

(Ⅰ)求证:⊥平面

(Ⅱ)求二面角的大小;

(Ⅲ)求点到平面的距离.

 

查看答案和解析>>

同步练习册答案