精英家教网 > 高中数学 > 题目详情
7.如图,在平面直角坐标系中有三条直线l1,l2,l3,其对应的斜率分别为k1,k2,k3,则下列选项中正确的是(  )
A.k3>k1>k2B.k1-k2>0C.k1•k2<0D.k3>k2>k1

分析 由图形可得:三条直线l1,l2,l3的倾斜角θi(i=1,2,3)满足:π>θ2>θ1$>\frac{π}{2}$>θ3>0,利用正切函数的单调性与斜率的计算公式即可得出.

解答 解:由图形可得:三条直线l1,l2,l3的倾斜角θi(i=1,2,3)满足:π>θ2>θ1$>\frac{π}{2}$>θ3>0,
∴k3>k2>k1
故选:D.

点评 本题考查了正切函数的单调性与斜率的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.顶点在原点,焦点坐标为(-3,0)的抛物线的标准方程y2=-12x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义在R上的偶函数f(x)满足f(x-3)=-f(x),对?x1,x2∈[0,3]且x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,则有(  )
A.f(49)<f(64)<f(81)B.f(49)<f(81)<f(64)C.f(64)<f(49)<f(81)D.f(64)<f(81)<f(49)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:
①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均为增函数,则f(x)、g(x)、h(x)中至少有一个增函数;
②若T均是f(x)+g(x)、f(x)+h(x)、g(x)+h(x)的一个周期,则T也均是f(x)、g(x)、h(x)的一个周期,
③若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是奇函数,则f(x)、g(x)、h(x)均是奇函数,
下列上述命题成立的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=x+xlnx的单调递增区间是(  )
A.(0,e-2B.(e-2,+∞)C.(-∞,e-2D.(e-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.函数f(x)=4cos(ωx-$\frac{π}{6}$)sinωx-2cos(2ωx+π),其中ω>0.
(1)求函数y=f(x)的值域;
(2)若f(x)的最小正周期为π,求f(x)在区间[-$\frac{π}{2}$,π]上的增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.不等式ax2+(a+1)x+1≥0恒成立,则实数a的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=2sin(ωx+$\frac{π}{6}$)(ω>0)在($\frac{π}{2}$,π)上单调递增,则ω的取值范围是(  )
A.(0,$\frac{1}{3}$]B.[$\frac{1}{3}$,$\frac{2}{3}$]C.[$\frac{2}{3}$,$\frac{4}{3}$]D.($\frac{2}{3}$,$\frac{4}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,内角A、B、C所对的边分别为a、b、c,已知a=csinB+bcosC.
(1)求A+C的值;
(2)若b=$\sqrt{2}$,求△ABC面积的最值.

查看答案和解析>>

同步练习册答案