精英家教网 > 高中数学 > 题目详情
19.对于任意x>0的实数,不等式4x+$\frac{1}{x}$>m2-1恒成立,则m的取值范围是($-\sqrt{5},\sqrt{5}$).

分析 利用基本不等式求得4x+$\frac{1}{x}$的最小值,结合4x+$\frac{1}{x}$>m2-1恒成立转化为关于m的不等式得答案.

解答 解:∵x>0,4x$+\frac{1}{x}$$≥2\sqrt{4x•\frac{1}{x}}=4$,
当且仅当4x=$\frac{1}{x}$,即x=$\frac{1}{2}$时上式等号成立,
由4x+$\frac{1}{x}$>m2-1恒成立,得m2-1<4,
∴m2<5,即$-\sqrt{5}<m<\sqrt{5}$.
故答案为:($-\sqrt{5},\sqrt{5}$).

点评 本题考查函数恒成立问题,考查了利用基本不等式刘函数最值,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若Rt△ABC的斜边的两端点A,B的坐标分别为(-3,0)和(7,0),则直角顶点C的轨迹方程为(x-2)2+y2=25(y≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知Sn为数列{an}的前n项和,a1=1,Sn+1=4an+2.
(1)设数列{bn}中,bn=an+1-2an,求证:{bn}是等比数列.
(2)设数列{cn}中,cn=$\frac{{a}_{n}}{{2}^{n}}$,求证:{cn}是等差数列.
(3)求数列{an}的通项公式及前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.下面的对应哪些是从M到N的映射?哪些是函数?
(1)设M=R,N=R,对应关系f:y=$\frac{1}{x}$,x∈M;
(2)设M={平面上的点},N={(x,y)|x,y∈R},对应关系f:M中的元素对应它在平面上的坐标;
(3)设M={高年级的全体同学},N={0,1},对应关系f:M中的男生对应1,女生对应0;
(4)设M=R,N=R,对应关系:f(x)=2x2+1,x∈M;
(5)设M={1,4,9},N={-1,1,-2,2,3,-3},对应关系:M中的元素开平方.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知:x>y>0,且xy=1,求证:$\frac{{x}^{2}+{y}^{2}}{x-y}$≥2$\sqrt{2}$,并且求符号成立的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$\sqrt{{a}^{2}-4a+4}$=2-a,函数f(x)=$\frac{1}{{3}^{x}}$-3x,x∈R.
(1)求f(a)的取值范围;
(2)若f(ea-m)+f(ea-1)≥0恒成立,求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.写出下列函数的单调区间.
(1)y=|x+1|;
(2)y=-x2+ax;
(3)y=|2x-1|;
(4)y=-$\frac{1}{x+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设全集S={1,2,…,15},A={a1,a2,a3}是S的子集,且(a1,a2,a3)满足:1≤a1<a2<a3≤15,a3-a2≤6,求满足条件的子集的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设A={-3,2a-1,a2+1},B={a-4,2-a,5}.
(1)若0∈A,求A∩B;
(2)若A∩B={5},求A∪B.

查看答案和解析>>

同步练习册答案