精英家教网 > 高中数学 > 题目详情
12.下列各组直线中,互相垂直的一组是(  )
A.2x-3y-5=0与4x-6y-5=0B.2x-3y-5=0与4x+6y+5=0
C.2x+3y-6=0与3x-2y+6=0D.2x+3y-6=0与2x-3y-6=0

分析 直线l1,l2的斜率存在分别k1,k2,由l1⊥l2?k1•k2=-1即可判断出.

解答 解:A.k1k2=$\frac{2}{3}•\frac{4}{6}$=$\frac{4}{9}$≠-1,因此l1与l2不垂直;
B.k1k2=$\frac{2}{3}$$•(-\frac{4}{6})$=-$\frac{4}{9}$≠-1,因此l1与l2不垂直;
C.k1k2=-$\frac{2}{3}$$•\frac{3}{2}$=-1,因此l1⊥l2
D.k1k2=-$\frac{2}{3}$$•\frac{2}{3}$=-$\frac{4}{9}$≠=-1,因此l1与l2不垂直.
故选:C.

点评 本题考查了两条直线垂直与斜率的关系,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.计算:7$\root{3}{3}$-3$\root{3}{24}$-6$\root{3}{\frac{1}{9}}$+$\root{4}{3\root{3}{3}}$+($\frac{1}{4}$)${\;}^{-\frac{1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若数列{an}前10项依次为$\frac{1}{2}$,$\frac{1}{3}$,$\frac{2}{3}$,$\frac{1}{4}$,$\frac{2}{4}$,$\frac{3}{4}$,$\frac{1}{5}$,$\frac{2}{5}$,$\frac{3}{5}$,$\frac{4}{5}$,…依此规律a15=$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$cos(2x+\frac{π}{3})-cos2x$(x∈R),其中下列结论正确的个数为(  )
①函数f(x)是最小正周期为π的奇函数;
②函数f(x)图象的一条对称轴是x=$\frac{2π}{3}$
③函数f(x)图象的一个对称中心为($\frac{5π}{12}$,0);
④函数f(x)的递增区间为$[{\left.{kπ+\frac{π}{6},kπ+\frac{2π}{3}}]}$(k∈Z).
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2sin2($\frac{π}{4}$+x)-$\sqrt{3}$cos2x-1,x∈R
(1)函数h(x)=f(x+t)的图象关于点(-$\frac{π}{6}$,0)对称,且t∈(0,π),求t的值;
(2)x∈[$\frac{π}{4}$,$\frac{π}{2}$],恒有|f(x)-m|<3成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若tanθ=$\frac{1}{3}$,π<θ<$\frac{3}{2}$π,则sinθcosθ的值为(  )
A.±$\frac{3}{10}$B.$\frac{3}{10}$C.$\frac{3}{\sqrt{10}}$D.±$\frac{3}{\sqrt{10}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设sinx+siny=$\frac{\sqrt{2}}{2}$,则cosx+cosy的取值范围是(  )
A.[0,$\frac{\sqrt{14}}{2}$]B.[-$\frac{\sqrt{14}}{2}$,0]C.[-$\frac{\sqrt{14}}{2}$,$\frac{\sqrt{14}}{2}$]D.[-$\frac{1}{2}$,$\frac{7}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若x∈R,n∈N*,规定:H${\;}_{x}^{n}$=x(x+1)(x+2)…(x+n-1),则f(x)=x•H${\;}_{x-2}^{5}$的奇偶性为(  )
A.是奇函数不是偶函数B.是偶函数不是奇函数
C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.sin$\frac{16π}{3}$的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案