精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=2sin2($\frac{π}{4}$+x)-$\sqrt{3}$cos2x-1,x∈R
(1)函数h(x)=f(x+t)的图象关于点(-$\frac{π}{6}$,0)对称,且t∈(0,π),求t的值;
(2)x∈[$\frac{π}{4}$,$\frac{π}{2}$],恒有|f(x)-m|<3成立,求实数m的取值范围.

分析 (1)化简可得f(x)=1-cos($\frac{π}{2}$+2x)-$\sqrt{3}$cos2x-1,h(x)=2sin(2x+2t-$\frac{π}{3}$),由题意可得t=$\frac{kπ}{2}+\frac{π}{3}$(k∈Z),结合t∈(0,π),即可求得t的值.
(2)由x∈[$\frac{π}{4}$,$\frac{π}{2}$]时,可得2x-$\frac{π}{3}∈[\frac{π}{6},\frac{2π}{3}]$,得f(x)∈[1,2],解不等式可得$\left\{\begin{array}{l}{m-3<1}\\{m+3>2}\end{array}\right.$,解得m的取值范围.

解答 解:(1)∵f(x)=2sin2($\frac{π}{4}$+x)-$\sqrt{3}$cos2x-1=1-cos($\frac{π}{2}$+2x)-$\sqrt{3}$cos2x-1
∴h(x)=f(x+t)=2sin(2x+2t-$\frac{π}{3}$),
又已知点(-$\frac{π}{6}$,0)为h(x)的图象的一个对称中心,
∴t=$\frac{kπ}{2}+\frac{π}{3}$(k∈Z),…(4分)
而t∈(0,π),
∴t=$\frac{π}{3}$或$\frac{5π}{6}$.…6分
(2)若x∈[$\frac{π}{4}$,$\frac{π}{2}$]时,2x-$\frac{π}{3}∈[\frac{π}{6},\frac{2π}{3}]$,
f(x)∈[1,2],由|f(x)-m|<3⇒m-3<f(x)<m+3. …10分
∴$\left\{\begin{array}{l}{m-3<1}\\{m+3>2}\end{array}\right.$,解得-1<m<4,(11分)
即m的取值范围是(-1,4).…12分

点评 本题主要考查了三角函数恒等变化的应用,考查了正弦函数的图象和性质,不等式的解法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知函数y=2x+b在区间[-1,3]上的最大值是7,则b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={1,2,$\sqrt{a}$},B={1,a},A∩B=B,则a等于(  )
A.0或$\sqrt{2}$B.0或2C.1或$\sqrt{2}$D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,-2).
(1)设向量$\overrightarrow{c}$=4$\overrightarrow{a}$+$\overrightarrow{b}$,求$\overrightarrow{b}$•$\overrightarrow{c}$的值;
(2)若实数λ使向量$\overrightarrow{a}$+λ$\overrightarrow{b}$与$\overrightarrow{a}$垂直,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足$\overrightarrow{OP}$=$\frac{{\overrightarrow{OB}+\overrightarrow{OC}}}{2}$+$λ\overrightarrow{AP}$,且λ≠1,则点P的轨迹一定通过△ABC的重心(填重心,垂心,外心或内心)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列各组直线中,互相垂直的一组是(  )
A.2x-3y-5=0与4x-6y-5=0B.2x-3y-5=0与4x+6y+5=0
C.2x+3y-6=0与3x-2y+6=0D.2x+3y-6=0与2x-3y-6=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{bx+c}{x+a}$的图象过原点,以直线x=-1为渐近线,且关于直线x+y=0对称,求函数f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx+$\frac{a}{x}$,讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}(x≤0)}\\{lo{{g}_{\frac{1}{2}}}{|x-1|}(x>0且x≠1)}\end{array}\right.$,若互不相等的实数a,b,c满足f(a)=f(b)=f(c),则a+b+c的取值范围是(  )
A.(-∞,2]B.(-∞,1]C.(1,2)D.(2,+∞)

查看答案和解析>>

同步练习册答案