精英家教网 > 高中数学 > 题目详情

已知,点B是轴上的动点,过B作AB的垂线轴于点Q,若,.

(1)求点P的轨迹方程;
(2)是否存在定直线,以PM为直径的圆与直线的相交弦长为定值,若存在,求出定直线方程;若不存在,请说明理由。

(1) y2=x;(2)存在定直线x=

解析试题分析:(1)设B(0,t),Q(m,0),P(x,y),由射影定理并整理可得m=-4t,然后再利用已知条件和向量相等的坐标表示的充要条件列出关于x,y的方程即可得到点P的轨迹方程.(2)假设存在.根据已知几何条件和勾股定理列出相交弦的表达式,再寻找a存在的条件即可.
试题解析:(1)设B(0,t),设Q(m,0),t2=|m|,m0, m=-4t2
 Q(-4t2,0),设P(x,y),则=(x-,y),=(-4t2-,0),
2=(-,2 t), +=2
(x-,y)+ (-4t2-,0)= (-,2 t),
 x=4t2,y="2" t, y2=x,此即点P的轨迹方程;       6分。
(2)由(1),点P的轨迹方程是y2=x;设P(y2,y),M (4,0) ,则以PM为直径的圆的圆心即PM的中点T(), 以PM为直径的圆与直线x=a的相交弦长:
L=2
=2=2      10分
若a为常数,则对于任意实数y,L为定值的条件是a-="0," 即a=时,L=
存在定直线x=,以PM为直径的圆与直线x=的相交弦长为定值
(2)存在定直线x=,以PM为直径的圆与直线x=的相交弦长为定值
考点:1.射影定理;2.向量相等的坐标表示的充要条件;3.勾股定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设平面向量,函数
(1)当时,求函数的取值范围;
(2)当,且时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点,曲线上的动点满足,定点,由曲线外一点向曲线引切线,切点为,且满足.

(1)求线段长的最小值;
(2)若以为圆心所作的圆与曲线有公共点,试求半径取最小值时圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,函数
(Ⅰ)若方程上有解,求的取值范围;
(Ⅱ)在中,分别是A,B,C所对的边,当(Ⅰ)中的取最大值且时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知数列2,5,11,20,x,47, 合情推出x的值为(   )

A.29B.31 C.32D.33

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知数列的通项公式,则数列的前项和取得最小值时的值为(   )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

数列……的一个通项公式为(  )

A. B.
C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

在数列1,1,2,3,5,8,x,21,34,55中,x等于(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在△ABC中,在AC上取点N,使得AN=AC,在AB上取点M,使得AM=AB,在BN的延长线上取点P,使得NP=BN,在CM的延长线上取一点Q,使MQ=λCM时,=,试确定λ的值.

查看答案和解析>>

同步练习册答案