精英家教网 > 高中数学 > 题目详情
3.如图所示茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,乙组数据的平均数为17.4,则x、y的值分别为(  )
A.7、8B.5、7C.8、5D.7、7

分析 根据中位数和平均数的公式分别进行计算即可.

解答 解:∵组数据的中位数为17,∴x=7,
∵乙组数据的平均数为17.4,
∴$\frac{1}{5}$(9+16+16+10+y+29)=17.4,
得80+y=87,
则y=7,
故选:D.

点评 本题主要考查茎叶图的应用,根据中位数和平均数的公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=4x3+ax2+bx+5在x=-1与x=$\frac{3}{2}$处有极值,则函数的单调递减区间为(-1,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(x2-a+1)ex,g(x)=(x2-2)ex+2
(1)若函数f(x)在区间[-2,2]上是单调函数,求实数a的取值范围;
(2)若f(x)有两个不同的极值点m,n(m<n),且2(m+n)≤mn-1,记F(x)=e2f(x)+g(x),求F(m)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知x+y+z=1.
证明:(1)x2+y2+z2≥xy+yz+zx,
(2)x2+y2+z2≥$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在三棱柱ABC-A1B1C1中,AC=BC=2,∠ACB=120°,D为A1B1的中点.
(Ⅰ)证明:A1C∥平面BC1D;
(Ⅱ)若A1A=A1C,点A1在平面ABC的射影在AC上,且侧面A1ABB1的面积为$2\sqrt{3}$,求三棱锥A1-BC1D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.一个袋中装有6个红球和4个白球(这10个球各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第二次摸出红球的概率为$\frac{5}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若$\overrightarrow a+\overrightarrow b+\overrightarrow c=\overrightarrow 0$,且$\overrightarrow a$与$\overrightarrow c$的夹角为60°,$\overrightarrow a$与$\overrightarrow b$的夹角为θ,$|{\overrightarrow b}|=\sqrt{3}|{\overrightarrow a}|$,则tanθ=(  )
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{3}$C.-$\frac{{\sqrt{3}}}{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.2cos275°-1的值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.-$\frac{{\sqrt{3}}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2lnx-2mx+x2(m>0).
(1)讨论函数f(x)的单调性;
(2)当m≥$\frac{{3\sqrt{2}}}{2}$时,若函数f(x)的导函数f'(x)的图象与x轴交于A,B两点,其横坐标分别为x1,x2(x1<x2),线段AB的中点的横坐标为x0,且x1,x2恰为函数h(x)=lnx-cx2-bx零的点,求证:(x1-x2)h'(x0)≥-$\frac{2}{3}$+ln2.

查看答案和解析>>

同步练习册答案