精英家教网 > 高中数学 > 题目详情

如图,表示神风摩托车厂一天的销售收入与摩托车销售量的关系;表示摩托车厂一天的销售成本与销售量的关系.

(1)写出销售收入与销售量之间的函数关系式;
(2)写出销售成本与销售量之间的函数关系式;
(3)当一天的销售量为多少辆时,销售收入等于销售成本;
(4)当一天的销售超过多少辆时,工厂才能获利?(利润=收入-成本)

(1)y=x(2)y=(3)x=4(4)x>4

解析试题分析:解:(1)设y=kx,∵直线过(4,4)两点,∴4=4k,∴k=1,∴y=x;
(2)设y=kx+b,∵直线过(0,2)、(4,4)两点,∴2=b,4=4k+2,∴k=,∴y=
(3)由图象知,当x=4时,销售收入等于销售成本,x=∴x=4;
(4)由图象知:当x>4时,工厂才能获利,即)>0时,即x>4时,才能获利
考点:函数的运用
点评:主要是考查了待定系数法求解解析式,以及运用函数与不等式来求解范围,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求的范围;   (2)不等式对任意恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某村计划建造一个室内面积为800的矩形蔬菜温室。在温室内,沿左.右两侧与后侧内墙各保留1宽的通道,沿前侧内墙保留3 宽的空地。当矩形温室的边长各为多少时?蔬菜的种植面积最大。最大种植面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级籽棉2吨、二级籽棉1吨;生产乙种棉纱1吨需耗一级籽棉1吨,二级籽棉2吨.每1吨甲种棉纱的利润为900元,每1吨乙种棉纱的利润为600元.工厂在生产这两种棉纱的计划中,要求消耗一级籽棉不超过250吨,二级籽棉不超过300吨.问甲、乙两种棉纱应各生产多少吨,能使利润总额最大?并求出利润总额的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)证明函数的图像关于点对称;
(2)若,求
(3)在(2)的条件下,若 为数列的前项和,若对一切都成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
⑴解不等式
⑵若不等式的解集为空集,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时, 求函数的单调增区间;
(Ⅱ)求函数在区间上的最小值;
(Ⅲ) 在(Ⅰ)的条件下,设,
证明:.参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

现需要制作一个容积为32的有铝合金盖的圆柱形铁桶,已知单位面积铝合金的价格是铁的3倍,问底面半径多大时桶的总造价最小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的定义域;
(2)若关于的不等式的解集是,求的取值范围.

查看答案和解析>>

同步练习册答案