精英家教网 > 高中数学 > 题目详情

【题目】某印刷厂为了研究印刷单册书籍的成本(单位:元)与印刷册数(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:

印刷册数(千册)

2

3

4

5

8

单册成本(元)

3.2

2.4

2

1.9

1.7

根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .

(1)为了评价两种模型的拟合效果,完成以下任务.

①完成下表(计算结果精确到0.1);

印刷册数(千册)

2

3

4

5

8

单册成本(元)

3.2

2.4

2

1.9

1.7

模型甲

估计值

2.4

2.1

1.6

残差

0

-0.1

0.1

模型乙

估计值

2.3

2

1.9

残差

0.1

0

0

②分别计算模型甲与模型乙的残差平方和,并通过比较 的大小,判断哪个模型拟合效果更好.

(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷.根据市场调查,新需求量为8千册(概率0.8)或10千册(概率0.2),若印刷厂以每册5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册能获得更多利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)

【答案】(1)模型乙的拟合效果更好;(2)印刷8千册对印刷厂更有利.

【解析】试题分析: 1根据题意,分别计算模型甲和乙的估计值与残差值,填出表格; ,故模型乙的拟合效果更好;(2)设新需求量为(千册),印刷厂利润为(元),列出分布列,分别求出期望值比较大小,判断出印刷8千册印刷厂能获得更多利润.

试题解析:解:(1)①经计算,可得下表:

印刷册数(千册)

2

3

4

5

8

单册成本(元)

3.2

2.4

2

1.9

1.7

模型甲

估计值

3.1

2.4

2.1

1.9

1.6

残差

0.1

0

-0.1

0

0.1

模型乙

估计值

3.2

2.3

2

1.9

1.7

残差

0

0.1

0

0

0

,故模型乙的拟合效果更好;

(2)若二次印刷8千册,则印刷厂获利为(元),

若二次印刷10千册,由(1)可知,单册书印刷成本为(元)

故印刷总成本为16640(元),

设新需求量为(千册),印刷厂利润为(元),则

8

10

0.8

0.2

,

故印刷8千册对印刷厂更有利.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形是正四棱柱的一个截面,此截面与棱交于点 ,其中分别为棱上一点.

(1)证明:平面平面

(2)为线段上一点,若四面体与四棱锥的体积相等,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥P﹣ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求二面角A﹣BE﹣P的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,已知AB⊥侧面BB1C1C,CB⊥C1B,BC=1,CC1=2,A1B1=
(1)试在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1
(2)在(1)的条件下,求AE和BC1所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)=(万元).当年产量不小于80千件时,C(x)=51x+(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(Ⅰ)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(Ⅱ)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=lg(ax﹣1)﹣lg(x﹣1)在区间[2,+∞)上是增函数,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1)五边形中,

,将沿折到的位置,得到四棱锥,如图(2),点为线段的中点,且平面.

(1)求证:平面平面

(2)若四棱柱的体积为,求四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)+g(x)=2x , 则有(
A.f(3)<g(0)<f(4)
B.g(0)<f(4)<f(3)
C.g(0)<f(3)<f(4)
D.f(3)<f(4)<g(0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,讨论的单调性;

(2)若,证明:当时,

查看答案和解析>>

同步练习册答案