精英家教网 > 高中数学 > 题目详情
若两条平行线l1,l2的方程分别是2x+3my-m+2=0,mx+6y-4=0,记l1,l2之间的距离为d,则m,d分别为(  )
A、m=2,d=
4
13
13
B、m=2,d=
10
5
C、m=2,d=
2
10
5
D、m=-2,d=
10
5
考点:两条平行直线间的距离
专题:直线与圆
分析:直接利用两条直线平行求出m,通过平行线之间的距离求出d即可.
解答: 解:两条平行线l1,l2的方程分别是2x+3my-m+2=0,mx+6y-4=0,
可得:
2
m
=
3m
6
-m+2
-4
,解得m=2,
两条平行线l1,l2的方程分别是2x+6y=0,2x+6y-4=0,
平行线之间的距离为:d=
4
22+62
=
10
5

故选:B.
点评:本题考查平行线的应用,平行线之间的距离的求法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是角A,B,C的对边,向量
m
=(a,b+c),
n
=(1,cosC+
3
sinC),且
m
n

(1)求角A;
(2)若3bc=16-a2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数y=f(x)的定义域为D,如果存在区间[m,n]⊆D同时满足下列条件:①f(x)在[m,n]是单调的;②当定义域为[m,n]时,f(x)的值域也是[m,n],则称区间[m,n]是该函数的“H区间”.若函数f(x)=
alnx-x(x>0)
-x
-a(x≤0)
存在“H区间”,则正数a的取值范围是(  )
A、(
1
4
,1]∪(2e,e2]
B、(
3
4
,1]∪(2e,e2]
C、(
1
4
,3]∪(e,e2]
D、(
3
4
,2]∪(e,e2]

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,BC边上的高所在直线的方程为x-2y+1=0,∠A的平分线所在直线的方程为y=0,若点B的坐标为(1,2),求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,点P(ρ0,θ0)(ρ0≠0)关于极点的对称点的坐标是(  )
A、(-ρ0,θ0
B、(ρ0,-θ0
C、(-ρ0,-θ0
D、(-ρ0,π+θ0

查看答案和解析>>

科目:高中数学 来源: 题型:

化简cos(45°-α)cos(α+15°)-sin(45°-α)sin(α+15°)的结果是(  )
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆(x-1)2+(y-2)2=1关于直线y=x+b对称,则实数b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果扇形圆心角的弧度数为2,圆心角所对的弦长也为2,那么这个扇形的面积是(  )
A、
1
sin21
B、
2
sin21
C、
1
sin22
D、
2
sin22

查看答案和解析>>

科目:高中数学 来源: 题型:

设M={0,1,2,4,5,8},N={0,2,3,5},则N∩M=(  )
A、{1,3}
B、{1,4,8}
C、{0,2,5}
D、{2,4,6}

查看答案和解析>>

同步练习册答案