精英家教网 > 高中数学 > 题目详情
如果扇形圆心角的弧度数为2,圆心角所对的弦长也为2,那么这个扇形的面积是(  )
A、
1
sin21
B、
2
sin21
C、
1
sin22
D、
2
sin22
考点:扇形面积公式
专题:计算题,三角函数的求值
分析:解直角三角形AOC,求出半径AO,代入弧长公式求出弧长的值,再求扇形的面积即可.
解答: 解:如图:∠AOB=2,过点0作OC⊥AB,C为垂足,并延长OC交
AB
于D,
∠AOD=∠BOD=1,AC=
1
2
AB=1,
Rt△AOC中,AO=
1
sin1

从而弧长为α•r=
2
sin1
,面积为
1
2
×
2
sin1
×
1
sin1
=
1
sin21

故选A.
点评:本题考查扇形的面积、弧长公式的应用,解直角三角形求出扇形的半径AO的值,是解决问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}是公差不为零的等差数列,a1=2且a2,a4,a8成等比数列.求数列{an}的通项.

查看答案和解析>>

科目:高中数学 来源: 题型:

若两条平行线l1,l2的方程分别是2x+3my-m+2=0,mx+6y-4=0,记l1,l2之间的距离为d,则m,d分别为(  )
A、m=2,d=
4
13
13
B、m=2,d=
10
5
C、m=2,d=
2
10
5
D、m=-2,d=
10
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(
π
2
+α)=
1
3
,则cos2α等于(  )
A、
7
9
B、
8
9
C、-
7
9
D、-
8
9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=|x2-2|+x2+ax.
(1)若a=3,求方程f(x)=0的解;
(2)若函数f(x)在(0,2)上有两个零点x1,x2
①求实数a的取值范围;
②证明:
2
1
x1
+
1
x2
<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

设i为虚数单位,复数
2i
1-2i
的共轭复数是(  )
A、
3
5
i
B、-
3
5
i
C、i
D、-
4
5
-
2
5
i

查看答案和解析>>

科目:高中数学 来源: 题型:

log1227=a,求log616=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(2x)=log2
6x+13
4
,则f(1)=(  )
A、log2
19
4
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,A(1,0),B(2,0)是两个定点,曲线C的参数方程为
x=2+cosθ
y=sinθ
(θ为参数).
(Ⅰ)将曲线C的参数方程化为普通方程;
(Ⅱ)以A(1,0)为极点,|
AB
|为长度单位,射线AB为极轴建立极坐标系,求曲线C的极坐标方程.[来.

查看答案和解析>>

同步练习册答案