精英家教网 > 高中数学 > 题目详情
1.命题“?x∈Z,使x2+2x+m≤0”的否定是(  )
A.?x∈Z,都有x2+2x+m≤0B.?x∈Z,使x2+2x+m>0
C.?x∈Z,都有x2+2x+m>0D.不存在x∈Z,使x2+2x+m>0

分析 将“存在”换为“?”同时将结论“x2+2x+m≤0”换为“x2+2x+m>0”.

解答 解:命题“?x∈Z,使x2+2x+m≤0”的否定是:
?x∈Z,都有x2+2x+m>0,
故选:C.

点评 求含量词的命题的否定,应该将量词交换同时将结论否定.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知集合M={x|-3≤x≤4},S={x||x-a|≤1},且M?S,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在三棱柱ABC-A1B1C1中,点C在平面A1B1C1内的射影为A1B1的中点O,AC=BC=AA1,∠ACB=90°
(1)求证:AB⊥CC1
(2)若CO=$\frac{\sqrt{2}}{2}$,求点C到平面ABO的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的首项为a1=1,且${a_{n+1}}=\frac{{{a_n}+4}}{{{a_n}+1}}$,(n∈N*).
(Ⅰ)求a2,a3的值,并证明:a2n-1<a2n+1<2;
(Ⅱ)令bn=|a2n-1-2|,Sn=b1+b2+…+bn.证明:$\frac{9}{8}[{1-{{({\frac{1}{9}})}^n}}]≤{S_n}<\frac{7}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.“a≥2”是“函数f(x)=x2+ax+1有零点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某公司从代理的A,B,C,D四种产品中,按分层抽样的方法抽取容量为110的样本,已知A,B,C,D四种产品的数量比是2:3:2,:4,则该样本中D类产品的数量为(  )
A.22B.33C.44D.55

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).

(1)求样本容量n和频率分布直方图中的x,y的值;
(2)估计本次竞赛学生成绩的中位数和平均分;
(3)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中至少有一人得分在[90,100]内的频率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=2x2+ax-2b,若a,b都是区间[0,4]内的数,则使f(1)<0的概率是(  )
A.$\frac{1}{4}$B.$\frac{3}{8}$C.$\frac{1}{2}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知实数x,y满足x>y>0且x+y=1,则$\frac{4}{x+3y}$+$\frac{1}{x-y}$的最小值是$\frac{9}{2}$.

查看答案和解析>>

同步练习册答案