精英家教网 > 高中数学 > 题目详情

(本题13分)最近北方遭受雪灾,蔬菜告急,南方某蔬菜公司要将一批蔬菜从南方A地运到北方B地,有汽车、火车两种运输工具可供选择,两种运输工具的主要参考数据如下表:

运输工具

途中速度

(km/h)

途中费用

(元/km)

装卸时间

(h)

装卸费用

(元)

汽车

50

8

2

1000

火车

100

4

4

2000

若这批蔬菜在运输过程(含装卸时间)中损耗为300元/h,设A、B  两地距离为km

(I)设采用汽车与火车运输的总费用分别为,求的表达式;

(II)试根据A、B两地距离大小比较采用哪种运输工具比较好(即运输总费用最小).

(注:总费用=途中费用+装卸费用+损耗费用)

(Ⅰ)   见解析(Ⅱ) 见解析


解析:

(Ⅰ)由题意可知,用汽车运输的总支出为:

 ………………………3分

用火车运输的总支出为:  定义域没写扣1分

 ………………………6分

(Ⅱ)(1)由 得

(2)由 得

(3)由 得     …………………………………………12分

答:当A、B两地距离小于时,采用汽车运输好

    当A、B两地距离等于时,采用汽车或火车都一样

        当A、B两地距离大于时,采用火车运输好      ………………13分

练习册系列答案
相关习题

科目:高中数学 来源:2011届福建省福州市八县(市)协作校高三上学期期中联考理科数学卷 题型:解答题

(本题13分)
已知集合A={x|},B={x|x2>5-4x},C={x│|x-m|<1,m∈R}。
(1)求A∩B;
(2)若(A∩B)C,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源:2014届浙江舟山二中等三校高二上学期期末联考理科数学试卷(解析版) 题型:解答题

(本题13分)设椭圆的左右焦点分别为,上顶点为,过点垂直的直线交轴负半轴于点,且的中点.

(1)求椭圆的离心率;

(2)若过点的圆恰好与直线相切,求椭圆的方程;

(3)在(2)的条件下过右焦点作斜率为的直线与椭圆相交于两点,在轴上是否存在点使得以为邻边的平行四边形为菱形,如果存在,求出的取值范围,如果不存在,说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省高一上学期期中考试数学试卷(解析版) 题型:解答题

(本题13分)已知函数

(Ⅰ)若,试判断并证明的单调性;

(Ⅱ)若函数上单调,且存在使成立,求的取值范围;

(Ⅲ)当时,求函数的最大值的表达式

 

查看答案和解析>>

科目:高中数学 来源:2010年黑龙江省高二上学期期中考试数学理卷 题型:解答题

(本题13分) 已知点,直线为平面上的动点,过点作直线的垂线,垂足为,且

(1)求动点的轨迹的方程;

(2)已知圆过定点,圆心在轨迹上运动,且圆轴交于两点,设,求的最大值.

 

查看答案和解析>>

同步练习册答案