ÏÂÁнáÂÛÖÐÕýÈ·µÄÊÇ
 

¢ÙµÈ²îÊýÁÐanµÄǰnºÍΪSn£¬ÔòÊýÁУºSn£¬S2n-Sn£¬S3n-S2n£¬¡­ÎªµÈ²îÊýÁУ»
¢ÚµÈ±ÈÊýÁÐanµÄǰnºÍΪSn£¬ÔòÊýÁУºSn£¬S2n-Sn£¬S3n-S2n£¬¡­ÎªµÈ±ÈÊýÁУ»
¢ÛµÈ±ÈÊýÁÐanµÄǰn»ýΪTn£¬ÔòÊýÁУºTn£¬
T2n
Tn
£¬
T3n
T2n
£¬¡­ÎªµÈ±ÈÊýÁУ»
¢ÜµÈ²îÊýÁÐanµÄǰnºÍΪSn£¬ÈôÊýÁУºSn£¬S2n-Sn£¬S3n-S2n£¬¡­Îª³£ÊýÊýÁУ¬ÔòÊýÁÐanµÄ¹«²îΪ0£»
¢ÝµÈ±ÈÊýÁÐanµÄǰnºÍΪSn£¬ÈôÊýÁУºS2n£¬S4n-S2n£¬S6n-S4n£¬¡­Îª³£ÊýÊýÁУ¬ÔòÊýÁÐanµÄ¹«±ÈΪ1£®
·ÖÎö£º¢Ù¸ù¾ÝµÈ²îÊýÁеÄÐÔÖÊ£¬ÍƳö2£¨S2n-Sn£©=Sn+£¨S3n-S2n£©£¬¼´¿ÉµÃµ½Sn£¬S2n-Sn£¬S3n-S2n£¬¡­ÎªµÈ²îÊýÁУ»
¢Ú¸ù¾ÝµÈ±ÈÊýÁеÄÐÔÖÊ£¬µÃµ½£¨S2n-Sn£©2ÓëSn•£¨S3n-S2n£©ÏàµÈ£¬µÃµ½Sn£¬S2n-Sn£¬S3n-S2n£¬¡­ÊǵȱÈÊýÁУ»
¢Û¸ù¾ÝµÈ±ÈÊýÁеÄǰnÏîºÍµÄ¹«Ê½¼°µÈ±ÈÊýÁеÄÐÔÖÊ£¬µÃµ½(
T2n
Tn
)
2
=Tn
T3n
T2n
£¬ËùÒÔ´ËÊýÁÐΪµÈ±ÈÊýÁУ»
¢Ü¸ù¾ÝµÈ²îÊýÁеÄǰnÏîºÍµÄ¹«Ê½¼°µÈ²îÊýÁеÄÐÔÖÊ£¬µÃµ½2£¨S2n-Sn£©=Sn•£¨S3n-S2n£©£¬¼´¿ÉÇó³ö¹«²îdµÄÖµ£»
¢Ý¸ù¾ÝµÈ±ÈÊýÁеÄǰnÏîºÍµÄ¹«Ê½¼°µÈ±ÈÊýÁеÄÐÔÖÊ£¬µÃµ½£¨S4n-S2n£©2ÓëS2n•£¨S6n-S4n£©ÏàµÈ£¬¼´¿ÉÇó³ö¹«±ÈqµÄÖµ£®
½â´ð£º½â£º¢ÙÉèµÈ²îÊýÁÐanµÄÊ×ÏîΪa1£¬¹«²îΪd£¬
ÔòSn=a1+a2+¡­+an£¬S2n-Sn=an+1+an+2+¡­+a2n=a1+nd+a2+nd+¡­+an+nd=Sn+n2d£¬
ͬÀí£ºS3n-S2n=a2n+1+a2n+2+¡­+a3n=an+1+an+2+¡­+a2n+n2d=S2n-Sn+n2d£¬
¡à2£¨S2n-Sn£©=Sn+£¨S3n-S2n£©£¬
¡àSn£¬S2n-Sn£¬S3n-S2nÊǵȲîÊýÁУ®´ËÑ¡ÏîÕýÈ·£»
¢ÚÉèµÈ±ÈÊýÁеÄÊ×ÏîΪa1£¬µÈ±ÈΪq£¬
ÔòSn=
a1(1-qn)
1-q
£¬S2n-Sn=
a1(1-q2n)
1-q
-
a1(1-qn)
1-q
=
a1qn(1- qn)
1-q
£¬Í¬ÀíS3n-S2n=
a1q2n(1-qn)
1-q
£¬
ËùÒÔ£¨S2n-Sn£©2=Sn£¨S3n-S2n£©£¬µÃµ½´ËÊýÁÐΪµÈ±ÈÊýÁУ¬´ËÑ¡ÏîÕýÈ·£»
¢ÛTn=a1a2¡­an£¬
T2n
Tn
=an+1an+2¡­a2n=qn2£¨a1a2¡­an£©£¬
T3n
T2n
=a2n+1a2n+2¡­a3n=qn2£¨an+1an+2¡­a2n£©£¬
ËùÒÔ(
T2n
Tn
)
2
=Tn
T3n
T2n
£¬ËùÒÔ´ËÊýÁÐΪµÈ±ÈÊýÁУ¬´ËÑ¡ÏîÕýÈ·£»
¢ÜÒòΪÊýÁУºSn£¬S2n-Sn£¬S3n-S2n£¬¡­Îª³£ÊýÊýÁУ¬ÉèSn=a£¬ÔòS2n-Sn=a£¬½âµÃ£ºS2n=2a£¬
¶ø2Sn=2na1+
2n(n-1)
2
d£¬S2n=2na1+
2n(2n-1)
2
d£¬ËùÒÔ½âµÃd=0£¬´ËÑ¡ÏîÕýÈ·£»
¢ÝÈôÊýÁУºS2n£¬S4n-S2n£¬S6n-S4n£¬¡­Îª³£ÊýÊýÁУ¬ÉèS2n=b£¬ÔòS4n-S2n=b£¬½âµÃS4n=2b£¬
¼ÙÈ繫±Èq=1£¬µÃµ½ÊýÁв»Îª³£ÊýÁУ¬ËùÒÔ¹«±Èq²»¿ÉÄÜΪ1£¬´ËÑ¡Ïî´í£¬
ËùÒÔ½áÂÛÕýÈ·µÄÐòºÅÓУº¢Ù¢Ú¢Û¢Ü
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Û¢Ü
µãÆÀ£º´ËÌ⿼²éѧÉúÁé»îÔËÓõȲµÈ±ÈÊýÁеÄÐÔÖÊ»¯¼òÇóÖµ£¬ÊÇÒ»µÀ×ÛºÏÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬ÏÂÁнáÂÛÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A¡¢
AB
=
CD
B¡¢
AB
-
AD
=
BD
C¡¢
AD
+
AB
=
AC
D¡¢
AD
+
BC
=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁнáÂÛÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=sin£¨x-¦Ð£©£¬g£¨x£©=cos£¨x+¦Ð£©£¬ÔòÏÂÁнáÂÛÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ãòÖÝÄ£Ä⣩É躯Êýf(x)=sin(x+
¦Ð
3
)
£¬ÔòÏÂÁнáÂÛÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¦Á¡¢¦ÂÊÇÁ½¸ö²»ÖØºÏµÄÆ½Ã棬lÊǿռäÒ»ÌõÖ±Ïߣ¬ÃüÌâp£ºÈô¦Á¡Îl£¬¦Â¡Îl£¬Ôò¦Á¡Î¦Â£»ÃüÌâq£ºÈô¦Á¡Íl£¬¦Â¡Íl£¬Ôò¦Á¡Î¦Â£®¶ÔÒÔÉÏÁ½¸öÃüÌ⣬ÏÂÁнáÂÛÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸