精英家教网 > 高中数学 > 题目详情

【题目】已知直线与椭圆交于不同的两点,线段的中点为,且直线与直线的斜率之积为.若直线与直线交于点,与直线交于点,且点为直线上一点.

1)求的轨迹方程;

2)若为椭圆的上顶点,直线轴交点,记表示面积,求的最大值.

【答案】12

【解析】

1)设,结合题意求得,然后消去参数即可得解;

2)结合题意,求出的坐标,然后结合三角形面积公式求解即可.

解:(1)设

联立方程

,且

因此

将其代入

因为

所以

所以直线方程为

可得

代入,得

消去,可得点的轨迹方程为.

2)根据题意,

所以椭圆的方程为.

由(1)知,

对于直线,令

所以

所以

所以

所以

时,取得最大值

此时,满足.

取得最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为抗击新型冠状病毒,普及防护知识,某校开展了疫情防护网络知识竞赛活动.现从参加该活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:,得到如图所示的频率分布直方图.

1)求的值,并估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);

2)在抽取的100名学生中,规定:比赛成绩不低于80分为优秀,比赛成绩低于80分为非优秀”.请将下面的2×2列联表补充完整,并判断是否有99%的把握认为比赛成绩是否优秀与性别有关

优秀

非优秀

合计

男生

40

女生

50

合计

100

参考公式及数据:.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,边长为4的正方形所在平面与正三角形所在平面互相垂直,分别为的中点.

(Ⅰ)求证:平面平面

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若向量列,满足条件:从第二项开始,每一项与它的前一项的差都等于同一个常向量(即坐标都是常数的向量),即,且为常向量),则称这个向量列为等差向量列,这个常向量叫做等差向量列的公差,且向量列的前项和为.已知等差向量列满足,则向量列的前项和

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知衡量病毒传播能力的最重要指标叫做传播指数RO.它指的是,在自然情况下(没有外力介入,同时所有人都没有免疫力),一个感染到某种传染病的人,会把疾病传染给多少人的平均数.它的简单计算公式是:确认病例增长率系列间隔,其中系列间隔是指在一个传播链中,两例连续病例的间隔时间(单位:天).根据统计,确认病例的平均增长率为,两例连续病例的间隔时间的平均数为天,根据以上RO数据计算,若甲得这种传染病,则轮传播后由甲引起的得病的总人数约为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积=(弦×矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为,半径等于米的弧田,按照上述经验公式计算所得弧田面积约是

A. 平方米 B. 平方米

C. 平方米 D. 平方米

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20201月,某公司以问卷的形式调查影响员工积极性的六项关键指标:绩效奖励、排班制度、激励措施、工作环境、人际关系、晋升渠道,在确定各项指标权重结果后,进而得到指标重要性分析象限图(如图).若客户服务中心从中任意抽取不同的两项进行分析,则这两项来自影响稍弱区的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某景区修建一栋复古建筑,其窗户设计如图所示.圆的圆心与矩形对角线的交点重合,且圆与矩形上下两边相切(为上切点),与左右两边相交(为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1,且,设,透光区域的面积为.

(1)求关于的函数关系式,并求出定义域;

(2)根据设计要求,透光区域与矩形窗面的面积比值越大越好.当该比值最大时,求边的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,试讨论的单调性;

2)对任意时,都有成立,试求k的取值范围.

查看答案和解析>>

同步练习册答案