精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,O为坐标原点,抛物线y2=x的弦PQ被直线L:x+y-2=0垂直平分,求△OPQ的面积.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线的定义、性质与方程
分析:设出P,Q的坐标,把PQ中点M的坐标用P,Q的坐标表示,由M在L上得P,Q坐标的关系,再由PQ得斜率等于1得P,Q坐标的另一关系,联立方程组求得P,Q的坐标,求出OP,OQ的长度,判断出OP与OQ垂直,然后代入三角形的面积公式求面积.
解答: 解:设P(a,a2),Q(b,b2),中点M(
a+b
2
a2+b2
2

将M代入L:x+y-2=0,得
a+b
2
+
a2+b2
2
-2=0
,即a+b+a2+b2=4  ①.
又PQ垂直L,
∴kPQ=1,即
a2-b2
a-b
=1
,a+b=1  ②.
代入①得:a2-a-1=0,解得:a=
5
2

a=
1+
5
2
时,b=
1-
5
2

a=
1-
5
2
时,b=
1+
5
2

P(
1+
5
2
3+
5
2
),Q(
1-
5
2
3-
5
2
)
,或P(
1-
5
2
3-
5
2
),Q(
1+
5
2
3+
5
2
)

1-
5
2
1+
5
2
+
3-
5
2
3+
5
2
=0

∴OP⊥OQ,
P(
1+
5
2
3+
5
2
),Q(
1-
5
2
3-
5
2
)
时,|OP|=
(
1+
5
2
)2+(
3+
5
2
)2
=
5+2
5
,|OQ|=
(
1-
5
2
)2+(
3-
5
2
)2
=
5-2
5

S△OPQ=
1
2
×
5+2
5
×
5-2
5
=
5
2

P(
1-
5
2
3-
5
2
),Q(
1+
5
2
3+
5
2
)
时,同理可得S△OPQ=
5
2
点评:本题是直线与圆锥曲线的综合题,解答的关键是充分利用抛物线y2=x的弦PQ被直线L:x+y-2=0垂直平分列P,Q坐标的关系,从而求得P,Q的坐标,考查了计算能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求过点A(1,-1)且与圆C:x2+y2=100切于点B(8,6)的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={a,b},N={c,d},定义M与N的一个运算“•”为:M•N={x|x=mn,m∈M,n∈N}.
(1)对于交集,有性质A∩B=B∩A;类比以上结论是否有M•N=N•M?并证明你的结论.
(2)举例验证(A•B)•C=A•(B•C).

查看答案和解析>>

科目:高中数学 来源: 题型:

一个三角形数表按如下方式构成(如图:其中项数n≥5):第一行是以4为首项,4为公差的等差数列,从第二行起,每一个数是其肩上两个数的和,例如:f(2,1)=f(1,1)+f(1,2);f(i,j)为数表中第i行的第j个数.
(1)求第2行和第3行的通项公式f(2,j)和f(3,j);
(2)证明:数表中除最后2行外每一行的数都依次成等差数列,并求f(i,1)关于i(i=1,2,…,n)的表达式;
(3)若f(i,1)=(i+1)(ai-1),bi=
1
aiai+1
,试求一个等比数列g(i)(i=1,2,…,n),使得Sn=b1g(1)+b22g(2)+…+bng(n)<
1
3
,且对于任意的m∈(
1
4
1
3
)均存在实数λ,当n>λ时,都有Sn>m.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为(5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图,如图.
(1)求a的值;
(2)根据样本数据,试估计盒子中小球重量的平均值;
(注:设样本数据第i组的频率为pi,第i组区间的中点值为xi(i=1,2,3,…,n),则样本数据的平均值为
.
X
=x1p1+x2p2+x3p3+…+xnpn.)
(3)从盒子中随机抽取3个小球,其中重量在(5,15]内的小球个数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

在椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),中,F1,F2分别为左右焦点A1,A2,B1,B2分别为四个顶点,已知菱形A1B1A2B2和菱形B1F1B2F2的面个积分别为4
3
和2
3

(1)求椭圆C的标准方程;
(2)过椭圆C的右顶点A2作两条互相垂直的直线分别和椭圆交于另一点P,Q,试判断直线PQ是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C的对边分别是a、b、c,
p
=(a+c,b),
q
=(c-a,b-c),且
p
q

(1)求∠A的大小;
(2)若∠B=
π
4
,求
a-b
a+b
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1.若D为B1C1的中点,求直线AD与平面A1BC1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-a|(x∈R,a为实数).
(1)讨论函数f(x)的奇偶性;
(2)设a>
1
2
,求函数f(x)的最小值;
(3)设a>0,g(x)=
f(x)
x
,x∈(0,a],若g(x)在区间(0,a]上是减函数,求a的取值范围.

查看答案和解析>>

同步练习册答案