| x(元) | 14 | 16 | 18 | 20 | 22 |
| Y(件) | 12 | 10 | 7 | 53 |
分析 (1)根据所给的数据,做出变量x,y的平均数,可得y对x的线性回归方程,并预测商品价格为24元时需求量的大小.
(2)求出回归模型的相关系数,可判断回归模型拟合效果的好坏.
解答 解:(1)$\overline{x}$=$\frac{1}{5}$×(14+16+18+20+22)=18,$\overline{y}$=$\frac{1}{5}$×(12+10+7+5+3)=7.4,
142+162+182+202+222=1 660,
=14×12+16×10+18×7+20×5+22×3=620,
∴$\stackrel{∧}{b}$=$\frac{620-5×18×7.4}{1660-5×1{8}^{2}}$=$\frac{-46}{40}$=-1.15.
∴$\stackrel{∧}{a}$=7.4+1.15×18=28.1,
∴线性回归方程为$\stackrel{∧}{y}$=-1.15x+28.1.
当x=24时,需求量为$\stackrel{∧}{y}$=-1.15x+28.1=0.5
(2)x=14时,y=12,差是0,
x=16时,y=9.7,差是0.3,
x=18时,y=7.4,差是0.4,
x=20时,y=5.1,差是0.1,
x=22时,y=2.8,差是0.2,
∴R2=1-(0+0.09+0.16+0.01+0.04)÷(21.16+6.76+0.16+5.76+19.36)=1-0.0056391=0.9943609,
由于0.9943609非常接近1,
故这个回归模型拟合效果比较好.
点评 本题考查线性回归方程,考查最小二乘法,考查预报值的求法,是一个新课标中出现的新知识点,已经在广东的高考卷中出现过类似的题目.
科目:高中数学 来源: 题型:选择题
| A. | -3-i | B. | -3+i | C. | 3-i | D. | 3+i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“负数的平方是正数”不是全称命题 | |
| B. | 命题“?x∈N,x3>x”的否定是“?x∈N,x3>x” | |
| C. | “a=1”是“函数f(x)=sin 2ax的最小正周期为π”的必要不充分条件 | |
| D. | “b=0”是“函数f(x)=ax2+bx+c是偶函数”的充要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com