精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x3﹣2x+ex ,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是

【答案】[﹣1, ]
【解析】解:函数f(x)=x3﹣2x+ex 的导数为:

f′(x)=3x2﹣2+ex+ ≥﹣2+2 =0,

可得f(x)在R上递增;

又f(﹣x)+f(x)=(﹣x)3+2x+ex﹣ex+x3﹣2x+ex =0,

可得f(x)为奇函数,

则f(a﹣1)+f(2a2)≤0,

即有f(2a2)≤﹣f(a﹣1)=f(1﹣a),

即有2a2≤1﹣a,

解得﹣1≤a≤

所以答案是:[﹣1, ].

【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为( ),直线l的极坐标方程为ρcos(θ﹣ )=a,且点A在直线l上,
(1)求a的值及直线l的直角坐标方程;
(2)圆C的参数方程为 (α为参数),试判断直线l与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车租赁公司为了调查A,B两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表: A型车

出租天数

1

2

3

4

5

6

7

车辆数

5

10

30

35

15

3

2

B型车

出租天数

1

2

3

4

5

6

7

车辆数

14

20

20

16

15

10

5

( I)从出租天数为3天的汽车(仅限A,B两种车型)中随机抽取一辆,估计这辆汽车恰好是A型车的概率;
(Ⅱ)根据这个星期的统计数据,估计该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率;
(Ⅲ)如果两种车型每辆车每天出租获得的利润相同,该公司需要从A,B两种车型中购买一辆,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,一个焦点F(﹣2,0),且长轴长与短轴长的比是
(1)求椭圆C的方程;
(2)设点M(m,0)在椭圆C的长轴上,点P是椭圆上任意一点.当 最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点A(-1,2)为圆心的圆与直线l1x+2y+7=0相切.过点B(-2,0)的动直线l与圆A相交于MN两点,QMN的中点.

(1)求圆A的方程;

(2)当|MN|=2时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD﹣A1B1C1D1中,AB=AA1=1,E为BC中点.
(1)求证:C1D⊥D1E;
(2)若二面角B1﹣AE﹣D1的大小为90°,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A (1,2),B(a,1),C(2,3),D(﹣1,b)(a,b∈R)是复平面上的四个点,且向量 对应的复数分别为z1 , z2 . (Ⅰ)若z1+z2=1+i,求z1 , z2
(Ⅱ)若|z1+z2|=2,z1﹣z2为实数,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x(lnx﹣ax)(a∈R)在区间(0,2)上有两个极值点,则a的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ ,g(x)=2x+a,若x1∈[ ,3],x2∈[2,3],使得f(x1)≥g(x2),则实数a的取值范围是(
A.a≤1
B.a≥1
C.a≤0
D.a≥0

查看答案和解析>>

同步练习册答案