精英家教网 > 高中数学 > 题目详情
2.下列各式中,值为$\sqrt{3}$的是(  )
A.sin15°cos15°B.${cos^2}\frac{π}{12}-{sin^2}\frac{π}{12}$
C.$\frac{{1+tan{{15}^0}}}{{1-tan{{15}^0}}}$D.$\sqrt{\frac{1+cos30°}{2}}$

分析 由条件利用二倍角公式、两角和的差三角公式,求出各个选项中式子的值,从而得出结论.

解答 解:由于sin15°cos15°=$\frac{1}{2}$sin30°=$\frac{1}{4}$,故排除A.
由于${cos}^{2}\frac{π}{12}$-${sin}^{2}\frac{π}{12}$=cos$\frac{π}{6}$=$\frac{\sqrt{3}}{2}$,故排除B.
由于$\frac{1+tan15°}{1-tan15°}$=tan60°=$\sqrt{3}$,满足条件.
由于$\sqrt{\frac{1+cos30°}{2}}$=cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30°=$\frac{\sqrt{6}+\sqrt{2}}{4}$,
故排除D,
故选:C.

点评 本题主要二倍角公式、两角和的差三角公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,在正三棱柱ABC-A1B1C1中,若BB1=$\sqrt{2}$,AB=2$\sqrt{2}$,求点C到直线AB1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,且S1=1,则q=-2,a2=-2,an=(-2)n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.将函数y=cos2x的图象向左平移$\frac{π}{3}$个单位长度,所得图象的函数解析式为(  )
A.$y=cos(2x-\frac{2π}{3})$B.$y=cos(2x+\frac{π}{3})$C.$y=cos(2x+\frac{2π}{3})$D.$y=cos(2x-\frac{π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知$sinα=\frac{3}{5}$,$α∈(\frac{π}{2},π)$,则$tan(α+\frac{π}{4})$的值为$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若双曲线2kx2-ky2=1的一个焦点的坐标为(0,4),则k的值为(  )
A.$\frac{3}{32}$B.$\frac{16}{3}$C.-$\frac{3}{32}$D.-$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f1(x)=e|x-2a+1|,f2(x)=e|x-a|+1,x∈R.
(1)若a=2,求f(x)=f1(x)+f2(x)在x∈[2,3]上的最小值;
(2)若|f1(x)-f2(x)|=f2(x)-f1(x)对于任意的实数x∈R恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知Sn为数列{an}的前n项和,a1=$\frac{1}{2}$,2Sn+1=Sn+$\frac{1}{{2}^{n}}$(n∈N*).根据上述条件可归纳出这个数列的通项公式为an=$\frac{2-n}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.有5本不同的书,其中语文书2本,数学书2本,物理书1本,若从中任抽一本,抽到的书是数学书的概率是(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

同步练习册答案