精英家教网 > 高中数学 > 题目详情
13.已知等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,且S1=1,则q=-2,a2=-2,an=(-2)n-1

分析 运用等差数列的中项性质,运用等比数列的通项公式和求和公式,计算即可得到所求值.

解答 解:Sn+1,Sn,Sn+2成等差数列,可得
2Sn=Sn+1+Sn+2
若q=1,可得Sn=na1=n,
即有2n=n+1+n+2,方程无解;
若q≠1,则2•$\frac{{a}_{1}(1-{q}^{n})}{1-q}$=$\frac{{a}_{1}(1-{q}^{n+1})}{1-q}$+$\frac{{a}_{1}(1-{q}^{n+2})}{1-q}$,
可得2qn=qn+1+qn+2
即为q2+q-2=0,解得q=1(舍去)或q=-2,
则q=-2,a2=a1q=-2,
an=a1qn-1=(-2)n-1
故答案为:-2,-2,(-2)n-1

点评 本题考查等比数列的通项公式和求和公式的运用,同时考查等差数列的中项性质,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=|x+2|-|2x-2|
(1)解不等式f(x)≥-2;
(2)设g(x)=x-a,对任意x∈[a,+∞)都有g(x)≥f(x),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,某简单组合体由一个圆锥和一个圆柱组成,则该组合体三视图的俯视图为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2sinxcosx,x∈R.
(Ⅰ)求f($\frac{π}{4}$)的值;
(Ⅱ)求函数f(x)的最小正周期;
(Ⅲ)求函数g(x)=f(x)+f(x+$\frac{π}{4}$)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知所P(0,3),点A是椭圆$\frac{{x}^{2}}{4}$+y2=1上的任意一点,点B是点A关于原点的对称点,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范围是[5,8].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数$f(x)=(x+3-\frac{a}{2})({e^x}-a)$,若x∈(0,1)时f(x)<0恒成立,则实数a的取值范围是[e,6].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.抛物线的标准方程是y2=-12x,则其焦点坐标是(  )
A.(3,0)B.(-3,0)C.(0,3)D.(0,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列各式中,值为$\sqrt{3}$的是(  )
A.sin15°cos15°B.${cos^2}\frac{π}{12}-{sin^2}\frac{π}{12}$
C.$\frac{{1+tan{{15}^0}}}{{1-tan{{15}^0}}}$D.$\sqrt{\frac{1+cos30°}{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=Asin(ωx-$\frac{π}{3}$)+1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离是$\frac{π}{2}$.
(1)求f(x)的解析式:
(2)求f(x)的在[0,π]上的单增区间:
(3)若f($\frac{α}{2}$)>2,求α的取值范围.

查看答案和解析>>

同步练习册答案