精英家教网 > 高中数学 > 题目详情
4.如图,某简单组合体由一个圆锥和一个圆柱组成,则该组合体三视图的俯视图为(  )
A.B.C.D.

分析 直接利用三视图判断俯视图即可.

解答 解:简单组合体由一个圆锥和一个圆柱组成,左侧是圆锥,右侧是圆柱,俯视图为:三角形与矩形组成,
故选:D.

点评 本题考查空间几何体的三视图的判断,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.计算下列各式的值:
(1)($\frac{1}{16}$)${\;}^{-\frac{3}{4}}$-4•(-2)-3+($\frac{1}{4}$)0-9${\;}^{\frac{1}{2}}$;
(2)2log32-log3$\frac{32}{9}$+log38-2${\;}^{lo{g}_{2}3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知p:|x+1|≤2,q:(x+1)(x-m)≤0
(1)若m=4,命题“p或q”为真,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在正三棱柱ABC-A1B1C1中,若BB1=$\sqrt{2}$,AB=2$\sqrt{2}$,求点C到直线AB1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图平行四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{b}$,$\overrightarrow{AD}$=$\overrightarrow{d}$,F是CD的三等分点,E是BC中点,M是AB中点,MC∩EF=N,若$\overrightarrow{MN}$=λ1$\overrightarrow{b}$+λ2$\overrightarrow{d}$,则λ12=(  )
A.$\frac{15}{14}$B.1C.$\frac{5}{14}$D.-$\frac{5}{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设抛物线y2=2px(p>0)的焦点为F.若F到直线y=$\sqrt{3}$x的距离为$\sqrt{3}$,则p=(  )
A.2B.4C.2$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,在菱形ABCD中,∠BAD=60°,线段AD,BD的中点分别为E,F.现将△ABD沿对角线BD翻折,则异面直线BE与CF所成角的取值范围是(  )
A.($\frac{π}{6}$,$\frac{π}{3}$)B.($\frac{π}{6}$,$\frac{π}{2}$]C.($\frac{π}{3}$,$\frac{π}{2}$]D.($\frac{π}{3}$,$\frac{2π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,且S1=1,则q=-2,a2=-2,an=(-2)n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f1(x)=e|x-2a+1|,f2(x)=e|x-a|+1,x∈R.
(1)若a=2,求f(x)=f1(x)+f2(x)在x∈[2,3]上的最小值;
(2)若|f1(x)-f2(x)|=f2(x)-f1(x)对于任意的实数x∈R恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案