精英家教网 > 高中数学 > 题目详情
12.有5本不同的书,其中语文书2本,数学书2本,物理书1本,若从中任抽一本,抽到的书是数学书的概率是(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

分析 有5本不同的书,从中任取1本,总的取法有5种,抽到的书是数学书的有2种,根据概率公式计算即可.

解答 解:有5本不同的书,从中任取1本,总的取法有5种,
抽到的书是数学书的有2种,
故从中任抽一本,抽到的书是数学书的概率是$\frac{2}{5}$,
故选:C.

点评 本题考查等可能事件的概率的求法,解题时要认真审题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.下列各式中,值为$\sqrt{3}$的是(  )
A.sin15°cos15°B.${cos^2}\frac{π}{12}-{sin^2}\frac{π}{12}$
C.$\frac{{1+tan{{15}^0}}}{{1-tan{{15}^0}}}$D.$\sqrt{\frac{1+cos30°}{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=Asin(ωx-$\frac{π}{3}$)+1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离是$\frac{π}{2}$.
(1)求f(x)的解析式:
(2)求f(x)的在[0,π]上的单增区间:
(3)若f($\frac{α}{2}$)>2,求α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$满足条件$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=0,|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|=1,求证:△ABC为正三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在平行四边形ABCD中,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,试用$\overrightarrow{a}$,$\overrightarrow{b}$表示向量$\overrightarrow{AC}$、$\overrightarrow{BD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}满足an=$\left\{\begin{array}{l}{(1-2a)n+1,n>3}\\{{a}^{n-2},1≤n≤3}\end{array}\right.$(n∈N*),若对于任意的n∈N*都有an>an+1,则实数a的取值范围是(  )
A.(0,$\frac{1}{2}$)B.(0,$\frac{5}{9}$)C.($\frac{1}{2}$,$\frac{5}{9}$)D.($\frac{5}{9}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,在平面直角坐标系xOy中,对于曲线Γ,若存在以O为顶点的角α,使得α≥∠AOB对于曲线π上的任意两个不同的点A,B恒成立,则称角α为曲线的相对于点O的“渐近角”并称其中最小的“渐近角”为曲线Γ的相对于点O的“望角”.已知曲线C:y=$\left\{\begin{array}{l}{2x{e}^{x-1}+2,x>0}\\{\frac{\sqrt{36+25{x}^{2}}}{3},x≤0}\end{array}\right.$(其中e=2.71828…是自然对数的底数),则曲线C的相对于点O的“望角”为(  )
A.$\frac{3π}{4}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的图象过点(0,$\frac{1}{2}$),对任意的x都有f(x1)≤f(x)≤f(x2),且|x2-x1|的最小值为$\frac{π}{2}$.
(1)求f($\frac{π}{12}$)的值;
(2)求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=|x2-2x-3|的增区间是[-1,1],[3,+∞).

查看答案和解析>>

同步练习册答案