精英家教网 > 高中数学 > 题目详情
7.如图,在平行四边形ABCD中,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,试用$\overrightarrow{a}$,$\overrightarrow{b}$表示向量$\overrightarrow{AC}$、$\overrightarrow{BD}$.

分析 根据向量加法的平行四边形法则和向量减法的几何意义便可得出$\overrightarrow{AC}=\overrightarrow{a}+\overrightarrow{b},\overrightarrow{BD}=\overrightarrow{b}-\overrightarrow{a}$.

解答 解:$\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{a}+\overrightarrow{b}$,$\overrightarrow{BD}=\overrightarrow{AD}-\overrightarrow{AB}=\overrightarrow{b}-\overrightarrow{a}$.

点评 考查向量加法的平行四边形法则,以及向量减法的几何意义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知$sinα=\frac{3}{5}$,$α∈(\frac{π}{2},π)$,则$tan(α+\frac{π}{4})$的值为$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=x(x+1)的图象在点x=1处的切线方程为(  )
A.3x-y-1=0B.3x-y-5=0C.3x-y+5=0D.3x+y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知两定点F1(-5,0),F2(5,0),动点P到这两定点距离差为6,则点的轨迹方程是$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}$=1(x≥3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax2-$\frac{1}{2}$x+c(a、c∈R),满足f(1)=0,f(0)=$\frac{1}{4}$成立.
(1)求a、c的值;
(2)是否存在实数m,使函数g(x)=f(x)-mx在区间[m,m+2]上有最小值-5?若存在,请求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.有5本不同的书,其中语文书2本,数学书2本,物理书1本,若从中任抽一本,抽到的书是数学书的概率是(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.从1-10这十个数字中任取三个数字,求大小在中间的数字正好是5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知$\overrightarrow{OA}$=(2$\sqrt{2}$,0),$\overrightarrow{OB}+\overrightarrow{OA}$=$\overrightarrow{0}$,O为坐标原点,动点E满足:|$\overrightarrow{BE}-\overrightarrow{BA}$|+|$\overrightarrow{AE}-\overrightarrow{AB}$|=6,求点E的轨迹C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(m,3),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则m=(  )
A.-$\frac{2}{3}$B.$\frac{3}{2}$C.-6D.6

查看答案和解析>>

同步练习册答案