精英家教网 > 高中数学 > 题目详情
对于函数f(x)=mx-
x2+2x+n
(x∈[-2,+∞),若存在闭区间[a,b]⊆[-2,+∞)(a<b),使得对任意x∈[a,b],恒有f(x)=c(c为实常数),则实数m,n的值依次为
 
分析:根据题意对任意x∈[a,b],恒有f(x)=c(c为实常数)知f(x)在[a,b]上应该为常函数,此时x的系数为0可得答案
解答:解:由题意知,当x∈[a,b]时,f(x)为常函数
当n=1时,f(x)=mx-
x2+2x+n
=mx-|x+1|
当x∈[-2,-1]时,f(x)=mx+x+1∴m=-1时f(x)为常函数.
当x∈(-1,+∝)时,f(x)=mx-x-1∴m=1时f(x)为常函数.
故答案为:±1和1.
点评:本题主要考查常函数的定义,函数的一种特殊情况.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法中:
①若定义在R上的函数f(x)满足f(x+2)=-f(x-1),则6为函数f(x)的周期;
②若对于任意x∈(1,3),不等式x2-ax+2<0恒成立,则a>
11
3

③定义:“若函数f(x)对于任意x∈R,都存在正常数M,使|f(x)|≤M|x|恒成立,则称函数f(x)为有界泛函.”由该定义可知,函数f(x)=x2+1为有界泛函;
④对于函数f(x)=
x-1
x+1
,设f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},则集合M为空集.
正确的个数为(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinx,-1)
n
=(cosx,3)

(1)设函数f(x)=(
m
+
n
)•
m
,求函数f(x)的单调递增区间;
(2)已知在锐角△ABC中,a,b,c分别为角A,B,C的对边,
3
c=2asin(A+B)
,对于(1)中的函数f(x),求f(B+
π
8
)
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=
x1+|x|
,下列结论正确的是

①f(x)在(-∞,+∞)上不是单调函数
②?m∈(0,1),使得方程f(x)=m有两个不等的实数解;
③?k∈(1,+∞),使得函数g(x)=f(x)-kx在R上有三个零点;
④?x1,x2∈R,若x1≠x2,则f(x1)≠f(x2).

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=
x-1
x+1
,设f2(x)=f[f(x)],f3(x)=f[f2(x)],…fn+1(x)=f[fn(x)],(n∈N*,且n≥2),令集合M={x|f2012(x)=
1
x
,x∈R}
,则集合M为(  )

查看答案和解析>>

同步练习册答案