精英家教网 > 高中数学 > 题目详情
12.已知点M(1,m)在抛物线C:y2=2px(P>0)上,且M到抛物线C的焦点F的距离等于2.
(1)求抛物线C的方程;
(2)若直线l与抛物线C相交于A、B两点,且OA⊥OB(O为坐标原点).求证直线AB恒过x轴上的某定点,并求出该定点坐标.

分析 (1)由抛物线的定义可知:1+$\frac{p}{2}$=2,即可求得p,代入求得抛物线C的方程;
(2)当当直线l的斜率不存在时,设l:x=t,(t>0)求得A点坐标,代入即可求得t的值;当直线的斜率存在时,设直线l:y=kx+m,代入抛物线方程由韦达定理可知x1+x2=-$\frac{2km-4}{{k}^{2}}$且x1x2=$\frac{{m}^{2}}{{k}^{2}}$,由OA⊥OB,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,根据向量数量积的坐标表示,求得k与m的关系,求得直线方程y=k(x-4),直线AB恒过x轴上的定点N(4,0).

解答 解:(1)∵点M(1,m)在抛物线C:y2=2px(p>0)上,点M到抛物线C的焦点F的距离为2,
∴1+$\frac{p}{2}$=2,
∴p=2,
∴抛物线C的方程为y2=4x;
(2)证明:当直线l的斜率不存在时,设l:x=t,(t>0)与抛物线第一象限交于A点,
∵OA⊥OB,
∴A(t,t),
代入整理得t2=4t,解得:t=4,
∴故直线恒过定点N(4,0)
当直线的斜率存在时,设直线l:y=kx+m,A(x1,y1),B(x2,y2),
联立y2=4x得kx2+(2km-4)x+m2=0,
依题意有k≠0,由韦达定理可知:x1+x2=-$\frac{2km-4}{{k}^{2}}$且x1x2=$\frac{{m}^{2}}{{k}^{2}}$①,
∵OA⊥OB,
$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,
∴x1x2+y1y2=0,
即(1+k2)x1x2+km(x1+x2)+m2=0,
将①代入化简得m2+4km=0,故m=-4k,
此时直线l:y=kx-4k=k(x-4),
直线AB恒过x轴上的定点N(4,0).

点评 本题考查抛物线的标准方程,直线与抛物线的位置关系,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若i是虚数单位,与复数$\frac{5}{i-2}$在复平面内对应的点关于实轴对称的点对应的复数是(  )
A.i+2B.i-2C.-2-iD.2-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M≥0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的一个上界.已知函数f(x)=1+a($\frac{1}{2}$)x+($\frac{1}{4}$)x,若函数f(x)在[-2,1]上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设m、n是两条不同的直线,α、β是两个不同的平面,下列命题中不正确的是(  )
A.m⊥α,n⊥α,则m∥nB.m?α,α∥β,则m∥βC.m⊥α,n?α,则m⊥nD.m∥α,n?α,则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知以F为焦点的抛物线y2=2px(p>0)的准线方程为x=-1,A、B、C为该抛物线上不同的三点,且点B在x轴的下方,若|${\overrightarrow{FA}}$|、|${\overrightarrow{FB}}$|、|${\overrightarrow{FC}}$|成等差数列,且$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=0,则直线AC的方程为(  )
A.y=xB.y=x+1C.y=2x+1D.y=2x-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=asin2x+b${x^{\frac{2}{3}}}$+4,(a,b∈R),若f(lg$\frac{1}{2015}$)=2014,则f(lg2015)=(  )
A.2013B.2014C.2015D.-2014

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an},{bn},其中{an}为等差数,列,b1=a1=2,且a3为a2与a5-1的等比中项,
(1)求an
(2)对$n∈{N^*},{b_{n+1}}-{b_n}={3^n}{a_n}$,求bn(用n表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色不同的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{11}{15}$D.$\frac{4}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.△ABC所在平面外一点到三角形三顶点A,B,C等距离,则P在平面ABC内的射影是△ABC的外心.

查看答案和解析>>

同步练习册答案