精英家教网 > 高中数学 > 题目详情
2.若i是虚数单位,与复数$\frac{5}{i-2}$在复平面内对应的点关于实轴对称的点对应的复数是(  )
A.i+2B.i-2C.-2-iD.2-i

分析 利用复数代数形式的乘除运算化简求得$\frac{5}{i-2}$在复平面内对应的点的坐标,进一步求出关于实轴对称的点的坐标得答案.

解答 解:∵$\frac{5}{i-2}$=$\frac{5(-2-i)}{(-2+i)(-2-i)}=\frac{5(-2-i)}{5}=-2-i$,
∴复数$\frac{5}{i-2}$在复平面内对应的点的坐标为(-2,-1),关于实轴对称的点的坐标为(-2,1),对应的复数为-2+i.
故选:B.

点评 本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线与圆(x-$\sqrt{3}$)2+y2=2相切,则双曲线的离心率为(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,A,B,C,D是平面直角坐标系上的四个点,将这四个点的坐标(x,y)分别代入x-y=k,若在某点处k取得最大值,则该点是(  )
A.点AB.点BC.点CD.点D

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设命题p:?x0∈R,x02+2ax0-2a=0,命题q:?x∈R,ax2+4x+a>-2x2+1,如果命题“p∨q”为真命题,“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知直线l1:x-2y-1=0,直线l2:ax+by-1=0,其中a,b∈{1,2,3,4,5,6},则l1⊥l2的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{12}$C.$\frac{1}{18}$D.$\frac{5}{36}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.集合A={(x,y)|y=a},集合B={(x,y)|y=bx+1,b>0,b≠1},若集合A∩B≠∅,则实数a的取值范围是(  )
A.(-∞,1)B.(-∞,1]C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{1}{2}$x2-2alnx+(a-2)x.
(1)当a=1时,求函数f(x)在[1,e]上的最小值和最大值;
(2)当a≤0时,讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设命题p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足$\left\{\begin{array}{l}{|x-1|≤2}\\{\frac{x+3}{2-x}≥0}\end{array}\right.$.
(1)若a=1,且p∧q为真,求实数x的取值范围
(2)若¬q是¬p的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知点M(1,m)在抛物线C:y2=2px(P>0)上,且M到抛物线C的焦点F的距离等于2.
(1)求抛物线C的方程;
(2)若直线l与抛物线C相交于A、B两点,且OA⊥OB(O为坐标原点).求证直线AB恒过x轴上的某定点,并求出该定点坐标.

查看答案和解析>>

同步练习册答案