精英家教网 > 高中数学 > 题目详情
17.已知直线l1:x-2y-1=0,直线l2:ax+by-1=0,其中a,b∈{1,2,3,4,5,6},则l1⊥l2的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{12}$C.$\frac{1}{18}$D.$\frac{5}{36}$

分析 先求出基本事件总数n=6×6=36,由l1⊥l2,得a=2b,由此能求出满足l1⊥l2的概率.

解答 解:∵直线l1:x-2y-1=0,直线l2:ax+by-1=0,
其中a,b∈{1,2,3,4,5,6},
∴基本事件总数n=6×6=36,
∵l1⊥l2,∴$\frac{1}{2}×(-\frac{a}{b})$=-1,∴a=2b,
∴满足l1⊥l2的基本事件(a,b)有(2,1),(4,2),(6,3),共有m=3个,
∴l1⊥l2的概率p=$\frac{m}{n}=\frac{3}{36}=\frac{1}{12}$.
故选:B.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11).
(1)求a,b的值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若曲线y=1+logax(a>0且a≠1)在点(1,1)处的切线经过坐标原点,则a=e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设集合A={y|y=x2-2x+1,0≤x≤3},集合B={x|x2-(2m-1)x+m(m-1)≤0}.已知命题p:x∈A,命题q:x∈B,且命题p是命题q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.化简求值:
(1)(2$\frac{7}{9}$)0.5+0.1-20+$\frac{1}{3}$;
(2)(xy2•x${\;}^{\frac{1}{2}}$•y${\;}^{-\frac{1}{2}}$)${\;}^{\frac{1}{3}}$•(xy)${\;}^{\frac{1}{2}}$其中x>0,y>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若i是虚数单位,与复数$\frac{5}{i-2}$在复平面内对应的点关于实轴对称的点对应的复数是(  )
A.i+2B.i-2C.-2-iD.2-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)是定义在R上的奇函数,其导函数为f'(x),且x<0时2f(x)+xf'(x)<0恒成立,则a=f(1),b=2014f($\sqrt{2014}$),c=2015f($\sqrt{2015}$)的大小关系为(  )
A.c<b<aB.c<a<bC.a<c<bD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.$\frac{\sqrt{3}tan12°-3}{sin12°(4cos{\;}^{2}12°-2)}$=-4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知以F为焦点的抛物线y2=2px(p>0)的准线方程为x=-1,A、B、C为该抛物线上不同的三点,且点B在x轴的下方,若|${\overrightarrow{FA}}$|、|${\overrightarrow{FB}}$|、|${\overrightarrow{FC}}$|成等差数列,且$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=0,则直线AC的方程为(  )
A.y=xB.y=x+1C.y=2x+1D.y=2x-1

查看答案和解析>>

同步练习册答案