精英家教网 > 高中数学 > 题目详情
6.因式分解:x3+4x2-7xy-2y2-8y3=(x-2y)(x2+2xy+4y2+4x+y).

分析 原式分组为(x3-8y3)+(4x2-7xy-2y2),分别因式分解,提取公因式即可得出.

解答 解:原式=(x3-8y3)+(4x2-7xy-2y2
=(x-2y)(x2+2xy+4y2)+(x-2y)(4x+y)
=(x-2y)(x2+2xy+4y2+4x+y),
故答案为:=(x-2y)(x2+2xy+4y2+4x+y).

点评 本题考查了因式分解方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.比较下列各组数的大小
(1)1.1${\;}^{\frac{1}{2}}$,0.9${\;}^{\frac{1}{2}}$,1;
(2)(-$\frac{\sqrt{2}}{2}$)${\;}^{\frac{2}{3}}$,(-$\frac{10}{7}$)${\;}^{-\frac{2}{3}}$,(-1.1)${\;}^{\frac{4}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C的中心在原点,左右焦点分别为F1(-1,0)和F2(1,0),点M(1,$\frac{3}{2}$)在椭圆上,过点P(-4,0)的直线l与椭圆交于A,B两点.
(1)求椭圆的方程
(2)记△ABF1的面积为S,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}中,a1=3,an+1=an-5anan+1(n∈N*).
(1)求正:数列{$\frac{1}{{a}_{n}}$}是等差数列
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.证明:$\root{n}{a}-1<\frac{a-1}{n}$ (其中(a>1,n∈N*且n≥2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若x2+y2=1,证明:-$\sqrt{{a}^{2}+{b}^{2}}$≤ax+by≤$\sqrt{{a}^{2}+{b}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.己知等比数列{an}的各项为正数,a1=3,a2+a3=18.
(1)求数列{an}的通项公式;
(2)若函数f(x)=Asin(2x+φ)(A>0,0<φ<π)在x=$\frac{π}{6}$处取得最大值,且最大值为a3,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.证明不等式:如果a>b>0,c>d>0,那么a2c>b2d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.证明命题n2<$\sqrt{{2}^{n}}$时,自然数n的取值范围为(  )
A.n>1B.n>2C.n>15D.n>16

查看答案和解析>>

同步练习册答案