精英家教网 > 高中数学 > 题目详情
16.证明命题n2<$\sqrt{{2}^{n}}$时,自然数n的取值范围为(  )
A.n>1B.n>2C.n>15D.n>16

分析 利用特殊数值,验证求解即可.

解答 解:当n=16时,n2=28,$\sqrt{{2}^{n}}$=28,此时162<$\sqrt{{2}^{16}}$不成立,
n=17,命题n2<$\sqrt{{2}^{n}}$成立.
故选:D.

点评 本题考查推理与证明,特殊值方法的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.因式分解:x3+4x2-7xy-2y2-8y3=(x-2y)(x2+2xy+4y2+4x+y).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数h(x)是定义在(-4,4)上的奇函数,且x∈(0,4)时,h(x)=-log2x.
(1)求h(x)的解析式;
(2)当x∈(-4,0)时,不等式[h(x)+2]2>h(x)m-1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.根据下列对于几何体结构特征的描述,说出几何体的名称.
(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其他各面都是矩形;
(2)由五个面围成,其中一个面是正方形,其它各面都是有一个公共顶点的全等三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在数列{an}中,a1=1,an+1=$\frac{5}{2}-\frac{1}{{a}_{n}}$,bn=$\frac{1}{{a}_{n}-2}$.
(1)求证:数列{bn+$\frac{2}{3}$}是等比数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)是R上的偶函数,当x>0时,f(x)=$\frac{2}{x}$+x-1.
 (1)用定义证明f(x)在(0,1)上是减函数.
 (2)求当x<0时,函数的解析式.
 (3)在区间(0,1)上,不等式m-f(x)<0恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解下列关于x的方程:
(1)lg$\sqrt{x-1}$=lg(x-1);
(2)log4(3-x)+log0.25(3+x)=log4(1-x)+log0.25(2x+1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.椭圆$\frac{{x}^{2}}{80}$+$\frac{{y}^{2}}{20}$=1上的点到直线x+2y-$\sqrt{10}$=0的最大距离是(  )
A.3B.5$\sqrt{2}$C.2$\sqrt{2}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,已知a=$\sqrt{6}$,c=2,A=60°,求B、C及b的值.

查看答案和解析>>

同步练习册答案