分析 由sinA,a及c的值,利用正弦定理求出sinC的值,根据a大于c得到C小于A,利用特殊角的三角函数值求出C的度数,再余弦定理列出关系式,将c,a,及cosC的值代入,得到关于b的方程,求出方程的解即可得到b的长.
解答 解:∵A=60°,a=$\sqrt{6}$,c=2,
∴根据正弦定理$\frac{a}{sinA}=\frac{c}{sinC}$得:sinC=$\frac{2×\frac{\sqrt{3}}{2}}{\sqrt{6}}$=$\frac{\sqrt{2}}{2}$,
∵c<a,∴C<60°,
∴C=45°,B=75°.
根据余弦定理得:c2=a2+b2-2abcosC,即b2-2$\sqrt{3}$b+2=0,
解得:b=$\sqrt{3}$±1,
∵B=75°,即b为最大边,
则b=$\sqrt{3}$+1.
点评 此题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1] | B. | (-∞,1] | C. | (-1,3] | D. | (-∞,1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com