精英家教网 > 高中数学 > 题目详情
6.不等式x2(x-1)>0的解集是(  )
A.(1,+∞)B.(-∞,1)∪(2,+∞)C.(0,1)D.(-∞,0)∪(0,+∞)

分析 要解得不等式等价于$\left\{\begin{array}{l}{{x}^{2}>0}\\{x-1>0}\end{array}\right.$,由此求得x的范围.

解答 解:不等式x2(x-1)>0,等价于$\left\{\begin{array}{l}{{x}^{2}>0}\\{x-1>0}\end{array}\right.$,求得x>1,
故选:A.

点评 本题主要考查绝对值不等式的解法,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知三棱柱ABC-A1B1C1中,点P在棱AA1上,若三棱锥P-BB1C1与三棱锥P-A1B1C1的体积比为3,则$\frac{P{A}_{1}}{PA}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PD⊥底面ABCD,PD=DC,点E是PC的中点,作EF⊥PB交PB于点,试通过建立空间直角坐标系解决以下问题:
(1)求证:PB⊥平面EFD;
(2)若$\frac{DC}{DA}$=λ,二面角P-BD-E的大小为30°,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知n∈N*,求证:2($\sqrt{n+1}$-1)<1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$<2$\sqrt{n}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图①,在等腰△ABC中,O是底边BC的中点,将△BAO沿AO折至△B′AO的位置.

(1)求证:AO⊥平面B′OC;
(2)若三棱锥B′-AOC的三视图是如图②所示的三个直角三角形,求二面角A-B′C-O的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设a>b>0,求证:$\frac{{(a-b)}^{2}}{8a}$<$\frac{a+b}{2}$-$\sqrt{ab}$<$\frac{(a-b)^{2}}{8b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,正四棱锥S-ABCD中,底面边长与高相等,K、T分别是SC、SB的中点.
(1)求证:KT∥平面SAD;
(2)求二面角K-AD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知m、n∈N*,求证:$\sqrt{mn(m+2)(n+2)}$-$\sqrt{mn(mn+2)}$≥3-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.三棱锥的底面为正三角形,侧面为等腰三角形,侧棱长为2,底面周长为9,求棱锥的高1.

查看答案和解析>>

同步练习册答案