分析 先将变形为:f(x)=2$\sqrt{1-2x}$+$\sqrt{4x+3}$=2$\sqrt{1-2x}$+$\sqrt{2}$•$\sqrt{2x+\frac{3}{2}}$,再由柯西不等式求得f(x)取得最大值,即可得解.
解答 解:由柯西不等式,f(x)=2$\sqrt{1-2x}$+$\sqrt{4x+3}$=2$\sqrt{1-2x}$+$\sqrt{2}$•$\sqrt{2x+\frac{3}{2}}$
≤$\sqrt{4+2}$•$\sqrt{1-2x+2x+\frac{3}{2}}$=$\sqrt{15}$
故当且仅当2$\sqrt{2x+\frac{3}{2}}$=$\sqrt{2}$•$\sqrt{1-2x}$,即x=-$\frac{1}{3}$时,f(x)取得最大值为$\sqrt{15}$.
点评 本题主要考查了柯西不等式在函数极值中的应用,解答的关键是对所给函数式灵活应用柯西不等式.
科目:高中数学 来源: 题型:选择题
| A. | a+b∈A | B. | a+b∈B | C. | a+b∈C | D. | a+b∈(A∩B∩C) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com