精英家教网 > 高中数学 > 题目详情
解不等式:loge
1
2
x-3)≥0.
考点:指、对数不等式的解法
专题:计算题,函数的性质及应用
分析:由y=logex在(0,+∞)上是增函数,且loge
1
2
x-3)≥0可得
1
2
x-3≥1.
解答: 解:∵y=logex在(0,+∞)上是增函数,且loge
1
2
x-3)≥0,
1
2
x-3≥1,
∴x≥8.
点评:本题考查了对数函数的单调性的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若a是R中的元素,但不是Q中的元素,则a可以是 (  )
A、3.14
B、log48
C、-5
D、
9
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(-3,2).
(1)求|
a
+
b
|和|
a
-
b
|;
(2)k为何值时,向量k
a
+
b
a
-3
b
垂直;
(3)k为何值时,向量k
a
+
b
a
-3
b
平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两名同学在五次考试中数学成绩统计用茎叶图如表示如图2所示,则甲的平均成绩比乙的平均成绩
 
(填高、低、相等);甲成绩的方差比乙成绩的方差
 
(填大、小)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
1
3
x3+x2-ax在区间(1,+∞)上单调递增,且在区间(1,2)上有零点,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2+bx+c在x=1,x=-
2
3
时,都取得极值.
(1)求a、b的值;
(2)若对x∈[-1,2],有f(x)<
1
c
恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个圆柱和一个圆锥同底等高,若圆锥的侧面积是其底面积的2倍,则圆柱的侧面积是其底面积的
 
倍.

查看答案和解析>>

科目:高中数学 来源: 题型:

某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K和D两个动作.比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩.假设每个运动员完成每个系列中的两个动作的得分是相互独立的.根据赛前训练统计数据,运动员小马完成甲系列和乙系列的情况如下表:
表1:甲系列表
动作K动作D动作
得分100804010
概率23   
2:乙系列
动作K动作D动作
得分100804010
概率23   
现运动员小马最后一个出场,之前其他运动员的最高得分为115分.
(1)若运动员小马希望获得该项目的第一名,应选择哪个系列?说明理由,并求其获得第一名的概率;
(2)若运动员小马选择乙系列,其成绩设为ξ,试写出ξ的分布列并求数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:
(1)函数y=f(x)的图象关于原点对称;
(2)对任意的实数x,都有f(x+3)=f(x)成立;
(3)当x∈[0,
3
2
]
时,f(x)=
3
2
-|
3
2
-2x|,
则方程f(x)=
1
|x|
在[-4,4]上根的个数是
 

查看答案和解析>>

同步练习册答案