精英家教网 > 高中数学 > 题目详情
18.已知(1)正方形的对角线相等;(2)平行四边形的对角线相等;(3)正方形是平行四边形.由(1)、(2)、(3)组合成“三段论”,根据“三段论”推理出一个结论,则这个结论是(  )
A.正方形是平行四边形B.平行四边形的对角线相等
C.正方形的对角线相等D.以上均不正确

分析 三段论是由两个含有一个共同项的性质判断作前提得出一个新的性质判断为结论的演绎推理.在三段论中,含有大项的前提叫大前提,如本例中的“平行四边形的对角线相等”;含有小项的前提叫小前提,如本例中的“正方形是平行四边形”.另外一个是结论.

解答 解:由演绎推理三段论可得
本例中的“平行四边形的对角线相等”为大前提;
本例中的“正方形是平行四边形”为小前提;
则结论为“正方形的对角线相等”
故选C.

点评 三段论推理是演绎推理中的一种简单判断推理.它包含两个性质判断构成的前提,和一个性质判断构成的结论.一个正确的三段论有仅有三个词项,其中联系大小前提的词项叫中项;出现在大前提中,又在结论中做谓项的词项叫大项;出现在小前提中,又在结论中做主项的词项叫小项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,已知中心在原点,焦点在x轴上的椭圆经过等腰梯形ABCD的四个顶点,两腰与x轴相交于点M,N,且$\overrightarrow{AM}=\frac{1}{3}\overrightarrow{AB}$
(1)若等腰梯形的高等于3,上底BC=2,MN=6,求椭圆方程;
(2)当MN等于椭圆的短轴长时,求椭圆的离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知在△ABC中,a,b,c分别是角A,B,C所对应的边,且a-2b=0.
(1)若$B=\frac{π}{6}$,求C;
(2)若$C=\frac{2}{3}π,c=14$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=2|x+1|+|x-3|.
(1)求不等式f(x)<5的解集;
(2)设g(x)=kx,若f(x)≥g(x)恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列积分的值等于1的是(  )
A.$\int_0^1{xdx}$B.${∫}_{0}^{1}$(x+1)dxC.${∫}_{0}^{1}$1dxD.${∫}_{0}^{1}$$\frac{1}{2}$dx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知△ABC的外心P满足$3\overrightarrow{AP}=\overrightarrow{AB}+\overrightarrow{AC}$,则cosA=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知圆C的方程为(x-3)2+(y-4)2=16,过直线l:6x+8y-5a=0(a>0)上的任意一点作圆的切线,若切线长的最小值为$2\sqrt{5}$,则直线l在y轴上的截距为$\frac{55}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若执行如图所示的程序框图,输出S的值为4,则判断框中应填入的条件是(  )
A.k<18B.k<17C.k<16D.k<15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命.为了研究司机开车时使用手机的情况,交警部门调查了100名机动车司机,得到以下统计:在55名男性司机中,开车时使用手机的有40人,开车时不使用手机的有15人;在45名女性司机中,开车时使用手机的有20人,开车时不使用手机的有25人.
(Ⅰ)完成下面的2×2列联表,并判断是否有99.5%的把握认为开车时使用手机与司机的性别有关;
开车时使用手机开车时不使用手机合计
男性司机人数
女性司机人数
合计
(Ⅱ)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为X,若每次抽检的结果都相互独立,求X的分布列和数学期望E(X).
参考公式与数据:${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(Χ2≥k00.1500.1000.0500.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步练习册答案