精英家教网 > 高中数学 > 题目详情
a
b
c
中每两个向量的夹角均为60°,且|
a
|=4,|
b
|=6,|
c
|=2,求|
a
+
b
+
c
|
的值.
分析:由于本题中未给出向量的坐标,故求向量的模时,主要是根据向量数量的数量积计算公式,求出向量模的平方,即向量的平方,再开方求解.
解答:解:∵
a
b
c
中每两个向量的夹角均为60°,且|
a
|=4,|
b
|=6,|
c
|=2

|
a
+
b
+
c
|2

=(
a
+
b
+
c
)2

=(
a
)2+(
b
)2+(
c
)
2
+2
a
b
+2
a
c
+2
b
c

=16+36+4+24+8+12
=100
|
a
+
b
+
c
|
=10
点评:求向量的模一般有两种情况:若已知向量的坐标,或向量起点和终点的坐标,则
a
=
x2+y2
|
AB
|=
(x1-x2)2+(y1-y2)2
;若未知向量的坐标,只是已知条件中有向量的模及夹角,则求向量的模时,主要是根据向量数量的数量积计算公式,求出向量模的平方,即向量的平方,再开方求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题包括高考A,B,C,D四个选题中的B,C两个小题,每小题10分,共20分.把答案写在答题卡相应的位置上.解答时应写出文字说明、证明过程或演算步骤.
B.选修4-2:矩阵与变换
已知矩阵A=
11
21
,向量
β
=
1
2
.求向量
α
,使得A2
α
=
β

C.选修4-4:极坐标与参数方程
在直角坐标系x0y中,直线l的参数方程为
x=
1
2
t
y=
2
2
+
3
2
t
(t为参数),若以直角坐标系xOy的O点为极点,Ox为极轴,且长度单位相同,建立极坐标系,得曲线C的极坐标方程为ρ=2cos(θ-
π
4
)

(1)求直线l的倾斜角;
(2)若直线l与曲线l交于A、B两点,求AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武昌区模拟)2011年武汉电视台问政直播节日首场内容是“让交通更顺畅”.A、B、C、D四个管理部门的负责人接受问政,分别负责问政A、B、C、D四个管理部门的现场市民代表(每一名代表只参加一个部门的问政)人数的条形图如下.为了了解市民对武汉市实施“让交通更顺畅”几个月来的评价,对每位现场市民都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:
满意 一般 不满意
A部门 50% 25% 25%
B部门 80% 0 20%
C部门 50% 50% 0
D部门 40% 20% 40%
(I)若市民甲选择的是A部门,求甲的调查问卷被选中的概率;
(11)若想从调查问卷被选中且填写不满意的市民中再选出2人进行电视访谈,求这两人中至少有一人选择的是D部门的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,正五边形ABCDE的每个顶点对应着一个整数,且这五个整数的和为正数.若其3个相邻顶点对应的整数依次为x、y、z,且y<0,则要进行如下的操作:把整数x、y、z分别换为x+y,-y,z+y,称其为一次“求正”操作.只要五个整数中有负整数,“求正”操作就要继续进行.
(Ⅰ)若 A,B,C,D,E对应的数分别为3,-2,-2,4,1,写出每一步“求正”操作直到终止;
(Ⅱ)若 A,B,C,D,E对应的数分别为a,-4,5,1,2,并且经过两次“求正”操作后终止,求实数a的值;
(Ⅲ)判断对任意满足条件的数组,“求正”操作是否经过有限次后就一定能终止?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三个非零向量a,b,c中每两个均不共线,若a+bc共线,b+ca共线,求a+b+c.

查看答案和解析>>

同步练习册答案